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@ How can AVX-512IFMA instructions accelerate ECC?

@ Optimizing ECC using ARM NEON and AVX2 instructions has been
thoroughly researched.
e However, using AVX-512IFMA instructions remains underexplored.
@ How can the optimized ECC implementation be integrated into
TLS applications?
o Few works consider integration; most focus solely on optimizing
cryptographic implementations.
@ How can the cold start issue of vector units be mitigated?
e The cold start issue can cause some primitives to be up to 3.8
times slower than normal.
@ To what extent can our optimized cryptographic implementation
improve TLS applications?
e It is more interesting to understand the improvements to TLS
applications rather than just focusing on cryptographic primitive
microbenchmarks.
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Background: AVX-512 & X25519 and Ed25519

AVX-512
@ 32 512-bit registers; Each 512-bit register can be divided into 32
16-bit, 16 32-bit, or 8 64-bit segments.
@ AVX-512IFMA supports 52-bit multipliers, whereas AVX2 and
AVX-512F only support 32-bit multipliers.
X25519 and Ed25519
@ X25519, designed by Daniel J. Bernstein, is a Diffie-Hellman key
exchange protocol based on Curve25519.

@ Ed25519, designed by Daniel J. Bernstein et al., is an
Edwards-curve digital signature algorithm.

@ In 2018, RFC 8446 included X25519 and Ed25519 in the
supported cipher suites for TLS 1.3.
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Background: TLS 1.3 handshake & DNS over TLS
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Optimized X25519 and Ed25519 implementation

Field arithmetic
@ Radix-2°!: A field element f = fy + 231, +2192f, 4 2153f; 4 22047,
@ 8 x 1-way: One subroutine performs 8 parallel independent field
operations.
@ We formally verified our field implementations using CryptoLine.

X25519-KeyGen Ed25519-Sign Ed25519-Verify
Scala}r mult‘iplication 8x 1 | | 1x8 | | 1x2 |
arithmetic layer
T T T
arithlll)lzitlilz layer | 8x1 | | 24 |
T T
Finite field | 8§ x1 |

arithmetic layer

Figure: An overview of our X/Ed25519 implementation.
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Optimized X25519 and Ed25519 implementation

Strategy: “finite field arithmetic” — “point arithmetic” — “scalar
multiplication”

@ X25519-KeyGen: 8 x 1 -8 x 1 — 8 x 1

e 12 times that of the OpenSSL implementation and 2.32 times that
of Cheng et al’s implementation.

@ X25519-Derive: We don’t provide a faster X25519-Derive
implementation than Hisil et al.
@ Ed25519-Sign: 8 x 1 -8 x 1 —1x8

e 3.79 times that of the OpenSSL implementation and 1.18 times that
of Faz-Hernéandez et al.s implementation.

@ Ed25519-Verify: 8 x 1 -2 x4 —1x2

e 3.33 times that of the OpenSSL implementation and 1.33 times that
of Faz-Hernandez et al.'s implementation.
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ENG25519: An OpenSSL ENGINE

@ ENG25519 is based on OpenSSL ENGINE APIs, libsuola, and
engntru.

@ Our optimized X/Ed25519 implementations can be transparently
integrated into OpenSSL and TLS applications through
ENG25519.

Table: Detailed configuration of ENG25519.

Subroutine Implementation
X25519-KeyGen Our8 x 1 —8x 1 — 8 x 1impl.
Ed25519-KeyGen batch-size = 16

4 x2—1x4impl. of
Hisil et al.

Ed25519-Sign Our8x1—8x1— 1 x 8impl.
Ed25519-Verify Our8x1—2x4—1x2impl.
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ENG25519: How to mitigate the cold-start issue?

Code start issue

@ The processor will set the upper parts of the AVX2/AVX-512
vector units to a low-power mode to save power if the units are not
in use for about 675 s, leading to a warm-up phase of
approximately 14 us (56,000 clock cycles at 4 GHz) when an
AVX2/AVX-512 instruction is executed in the low-power mode.

@ During the warm-up phase, the throughput of the related
instructions is 4.5 times slower than usual.

@ All X/Ed25519 primitives suffer from varying degrees of
performance degradation; especially the X25519-KeyGen takes
3.8 times longer in the DoT scenario than in the warm-start
scenario.
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ENG25519: How to mitigate the cold-start issue?

We designed a heuristic auxiliary thread that performs different actions
based on the application’s varying load conditions.
@ Low-load scenarios: It takes no action to avoid disrupting the
processor’s power-saving strategies.
@ Medium-load: It periodically executes a vector instruction.
@ High-load: The frequent cryptographic operations inherently
prevent entering low-power mode.

Table: Amortized CPU cycles (CC) to generate a keypair.

Batch Amortized CC Amortized CC
size  with auxiliary thread without auxiliary thread
1 10,315 28,450
4 9,107 19,388
8 9,003 14,108

—

6 8,980 11,406
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ENG25519: Benchmark of TLS handshake
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ENG25519: Benchmark of DoT query

Client: dot_timer <+ Server: unbound DoT server’
End-to-end experiments
@ Our ENG25519 outperforms
all other configurations. = T 1

—-— ENG25519

Peak throughput O3] o ALL-OpensSL

@ Our ENG25519 configuration
achieved a significant
improvement, achieving
290,315 #queries/min, which
represents a 41% and 24% _ .
increase over P256 (206,275) NI
and X25519 (234,875),
respectively.

Cumulative distribution: P(X < x)

i

1

I

i

t

i

i

H ! !
0.5 : H i
H ! |
i

|

i

i

i

i

i

"https://nlnetlabs.nl/projects/unbound/about/

Jipeng Zhang et al. ENG25519 August 15, 2024 12/14


https://nlnetlabs.nl/projects/unbound/about/

Conclusions

@ Faster X/Ed25519 implementation using AVX-512IFMA.

@ Integration of optimized X/Ed25519 implementations into TLS;
faster TLS 1.3 handshake; increased DNS over TLS throughput.

@ Under cold start conditions, some primitives may suffer a
performance degradation of up to 3.8 times. If the vector
implementation does not achieve significant improvements, a
reevaluation of the vector implementation versus the x64
implementation is necessary.

@ Open source artifact:
https://github.com/Ji-Peng/eng25519_artifact.
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Thanks for listening
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