ENG25519: Faster TLS 1.3 handshake using

optimized X25519 and Ed25519

Jipeng Zhang', Junhao Huang?3, Lirui Zhao', Donglong Chen?,
Cetin Kaya Kog'4°

"Nanjing University of Aeronautics and Astronautics, Jiangsu, China
jp-zhang@outlook.com, lirui.zhao@outlook.com
2Guangdong Provincial Key Laboratory IRADS, BNU-HKBU United International College
huangjunhao®@uic.edu.cn, donglongchen@uic.edu.cn
3Hong Kong Baptist University
4lgdir University
SUniversity of California Santa Barbara
cetinkoc@ucsb.edu
Artifact: https://github.com/Ji-Peng/eng25519_artifact

August 15, 2024

Jipeng Zhang et al. ENG25519 August 15, 2024 1/14

https://github.com/Ji-Peng/eng25519_artifact

0 Motivations
e Background
e Optimized X/Ed25519 implementation & ENG25519

e Conclusions

Jipeng Zhang et al. ENG25519 August 15, 2024 2/14

@ How can AVX-512IFMA instructions accelerate ECC?

@ Optimizing ECC using ARM NEON and AVX2 instructions has been
thoroughly researched.
e However, using AVX-512IFMA instructions remains underexplored.
@ How can the optimized ECC implementation be integrated into
TLS applications?
o Few works consider integration; most focus solely on optimizing
cryptographic implementations.
@ How can the cold start issue of vector units be mitigated?
e The cold start issue can cause some primitives to be up to 3.8
times slower than normal.
@ To what extent can our optimized cryptographic implementation
improve TLS applications?
e It is more interesting to understand the improvements to TLS
applications rather than just focusing on cryptographic primitive
microbenchmarks.

Jipeng Zhang et al. ENG25519 August 15, 2024 3/14

Background: AVX-512 & X25519 and Ed25519

AVX-512
@ 32 512-bit registers; Each 512-bit register can be divided into 32
16-bit, 16 32-bit, or 8 64-bit segments.
@ AVX-512IFMA supports 52-bit multipliers, whereas AVX2 and
AVX-512F only support 32-bit multipliers.
X25519 and Ed25519
@ X25519, designed by Daniel J. Bernstein, is a Diffie-Hellman key
exchange protocol based on Curve25519.

@ Ed25519, designed by Daniel J. Bernstein et al., is an
Edwards-curve digital signature algorithm.

@ In 2018, RFC 8446 included X25519 and Ed25519 in the
supported cipher suites for TLS 1.3.

Jipeng Zhang et al. ENG25519 August 15, 2024 4/14

Background: TLS 1.3 handshake & DNS over TLS

TLS 1.3 handshake

Client

Server
TCP SYN

@ Client op; Server op.
0 X25519' xisw

KeyGen/KeyGen+X25519- e
Derive+Ed25519-

Sign+X25519-

TCP SYN-ACK

X25519-KeyGen

TLS 1.3 Client Hello

[+ key_share

Client X25519 public key
+ signature_algorithms
Ed25519

TLS 1.3 Server Hello

i - 'X25519-Derive with |
Derive+Ed25519
. own secret key
Verify. L

. X25519 Shared Seeret |
D N S Over TLS Ed25519-Verify on
received signature

key_share
Server X25519 public key

{EncryptedExtensions}

{Certificate}

Server certificate and certificate chain
{CertificateVerify}

Ed25519 signature over handshake

{Finished}

o TLS handshake%DNS ‘TLSI,}kcyschcdulc‘

4;leshcd) }—>

queries and responses

Encrypted Application Data

X25519

i X25519-Derive with
{ Client's public key and
own secret key

| X25519 Shared Secret
Ed25519-Sign of
handshake for
CertificateVerify

TLS 1.3 key schedule

over the TLS
connection.

{771 £ x25519 operation

Jipeng Zhang et al. ENG25519

Ed25519 operation {}: Encrypted message +: Noteworthy extension

August 15, 2024 5/14

Optimized X25519 and Ed25519 implementation

Field arithmetic
@ Radix-2°!: A field element f = fy + 231, +2192f, 4 2153f; 4 22047,
@ 8 x 1-way: One subroutine performs 8 parallel independent field
operations.
@ We formally verified our field implementations using CryptoLine.

X25519-KeyGen Ed25519-Sign Ed25519-Verify
Scala}r mult‘iplication 8x 1 | | 1x8 | | 1x2 |
arithmetic layer
T T T
arithlll)lzitlilz layer | 8x1 | | 24 |
T T
Finite field | 8§ x1 |

arithmetic layer

Figure: An overview of our X/Ed25519 implementation.

Jipeng Zhang et al. ENG25519 August 15, 2024 6/14

Optimized X25519 and Ed25519 implementation

Strategy: “finite field arithmetic” — “point arithmetic” — “scalar
multiplication”

@ X25519-KeyGen: 8 x 1 -8 x 1 — 8 x 1

e 12 times that of the OpenSSL implementation and 2.32 times that
of Cheng et al’s implementation.

@ X25519-Derive: We don’t provide a faster X25519-Derive
implementation than Hisil et al.
@ Ed25519-Sign: 8 x 1 -8 x 1 —1x8

e 3.79 times that of the OpenSSL implementation and 1.18 times that
of Faz-Hernéandez et al.s implementation.

@ Ed25519-Verify: 8 x 1 -2 x4 —1x2

e 3.33 times that of the OpenSSL implementation and 1.33 times that
of Faz-Hernandez et al.'s implementation.

Jipeng Zhang et al. ENG25519 August 15, 2024 7/14

ENG25519: An OpenSSL ENGINE

@ ENG25519 is based on OpenSSL ENGINE APIs, libsuola, and
engntru.

@ Our optimized X/Ed25519 implementations can be transparently
integrated into OpenSSL and TLS applications through
ENG25519.

Table: Detailed configuration of ENG25519.

Subroutine Implementation
X25519-KeyGen Our8 x 1 —8x 1 — 8 x 1impl.
Ed25519-KeyGen batch-size = 16

4 x2—1x4impl. of
Hisil et al.

Ed25519-Sign Our8x1—8x1— 1 x 8impl.
Ed25519-Verify Our8x1—2x4—1x2impl.

Jipeng Zhang et al. ENG25519 August 15, 2024 8/14

X25519-Derive

ENG25519: How to mitigate the cold-start issue?

Code start issue

@ The processor will set the upper parts of the AVX2/AVX-512
vector units to a low-power mode to save power if the units are not
in use for about 675 s, leading to a warm-up phase of
approximately 14 us (56,000 clock cycles at 4 GHz) when an
AVX2/AVX-512 instruction is executed in the low-power mode.

@ During the warm-up phase, the throughput of the related
instructions is 4.5 times slower than usual.

@ All X/Ed25519 primitives suffer from varying degrees of
performance degradation; especially the X25519-KeyGen takes
3.8 times longer in the DoT scenario than in the warm-start
scenario.

Jipeng Zhang et al. ENG25519 August 15, 2024 9/14

ENG25519: How to mitigate the cold-start issue?

We designed a heuristic auxiliary thread that performs different actions
based on the application’s varying load conditions.
@ Low-load scenarios: It takes no action to avoid disrupting the
processor’s power-saving strategies.
@ Medium-load: It periodically executes a vector instruction.
@ High-load: The frequent cryptographic operations inherently
prevent entering low-power mode.

Table: Amortized CPU cycles (CC) to generate a keypair.

Batch Amortized CC Amortized CC
size with auxiliary thread without auxiliary thread
1 10,315 28,450
4 9,107 19,388
8 9,003 14,108

—

6 8,980 11,406

Jipeng Zhang et al. ENG25519 August 15, 2024 10/14

ENG25519: Benchmark of TLS handshake

Client: tls_timer «» Server: OpenSSL s_server

—— P256
091 -~ X25519
—— ENG25519

On average, the proposed os| T O
ENG25519 setting (1,707
#connections/second) enables
25% and 35% more handshakes
per second than X25519 (1,366)
and P256 (1,260), respectively.

Cumulative distribution: P(X < x)
)
w

S
o

: 1

|
H ‘ i
0](100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700
#connections / second

Jipeng Zhang et al. ENG25519 August 15, 2024 11/14

ENG25519: Benchmark of DoT query

Client: dot_timer <+ Server: unbound DoT server’
End-to-end experiments
@ Our ENG25519 outperforms
all other configurations. = T 1

—-— ENG25519

Peak throughput O3] o ALL-OpensSL

@ Our ENG25519 configuration
achieved a significant
improvement, achieving
290,315 #queries/min, which
represents a 41% and 24% _ .
increase over P256 (206,275) NI
and X25519 (234,875),
respectively.

Cumulative distribution: P(X < x)

i

1

I

i

t

i

i

H ! !
0.5 : H i
H ! |
i

|

i

i

i

i

i

"https://nlnetlabs.nl/projects/unbound/about/

Jipeng Zhang et al. ENG25519 August 15, 2024 12/14

https://nlnetlabs.nl/projects/unbound/about/

Conclusions

@ Faster X/Ed25519 implementation using AVX-512IFMA.

@ Integration of optimized X/Ed25519 implementations into TLS;
faster TLS 1.3 handshake; increased DNS over TLS throughput.

@ Under cold start conditions, some primitives may suffer a
performance degradation of up to 3.8 times. If the vector
implementation does not achieve significant improvements, a
reevaluation of the vector implementation versus the x64
implementation is necessary.

@ Open source artifact:
https://github.com/Ji-Peng/eng25519_artifact.

Jipeng Zhang et al. ENG25519 August 15, 2024 13/14

https://github.com/Ji-Peng/eng25519_artifact

Thanks for listening

Jipeng Zhang et al. ENG25519 August 15, 2024 14/14

	Motivations
	Background
	Optimized X/Ed25519 implementation & ENG25519
	Conclusions

