Vectorized Falcon-Sign Implementations using SSE2, AVX2,

AVX-512F, NEON, and RVV

Jipeng Zhang! Jiaheng Zhang!

INational University of Singapore, Singapore
jp-zhang@outlook.com
Paper: https://eprint.iacr.org/2025/1867
Artifact: https://github.com/Ji-Peng/VecFalcon
Slides: https://ji-peng.github.io/uploads/tches2026/VecFalcon_slides.pdf
IACR TCHES 2026-1

2026-01-08

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

https://eprint.iacr.org/2025/1867
https://github.com/Ji-Peng/VecFalcon
https://ji-peng.github.io/uploads/tches2026/VecFalcon_slides.pdf

@ Contributions

© Motivations

© Background

@ Vectorized BaseSampler

© Vectorized FFT (RISC-V)

© Results

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations

Contributions

This paper focuses on optimizing Falcon Signature Generation.

e Performance Profiling: Identified BaseSampler (> 30%) and FFT-related subroutines
(on RISC-V) as bottlenecks.
@ Vectorized BaseSampler:

o Implemented across 6 ISAs: SSE2, AVX2, AVX-512F, NEON, RVV, RV64IM.
o Achieved up to 8.4x (AVX2) and 7.7x (RVV) speedup for the sampler.

@ Vectorized FFT on RVV:

o Novel 445 layer merging strategy using strided load/store instructions.
o Achieved 4.7x speedup on RVV.

o Signature generation speedups of 23% (AVX2), 36% (AVX-512F), and 59%
(RV64GCVB).

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

FaLcoN (FN-DSA)

@ Selected by NIST for standardization (FIPS 206). Note: The FIPS 206 standard
document was not yet published at the time of this work.

o Fast verification, but slow signature generation.

Bottleneck 1: Discrete Gaussian Bottleneck 2: FFT on RISC-V
Sampling o FFT-related ops take ~ 38% time on
@ BaseSampler accounts for > 30% of SpacemiT X60 (RV64GCVB).
signing time.

@ Existing optimizations lack efficient deep
@ Non-vectorizable in reference code due layer merging strategies.

to sequential UniformBits calls for

KAT compatibility.

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

Background: FALCON & BaseSampler

Falcon Signature Generation

@ Involves Fast Fourier Sampling (ffSampling) and Discrete Gaussian Sampling
(SamplerZ).

@ SamplerZ calls BaseSampler to sample integers zy from distribution x.
Target Platforms

Architecture CPU ISA

x86-64 Intel i7-11700K SSE2, AVX2, AVX-512F
ARMvS-A Cortex-A72 NEON

RISC-V SpacemiT X60 RV64GC, RVV (v1.0), Bit-manip

Jipeng Zhang et al. (NUS)

Vectorized Falcon-Sign Software Implementations 2026-01-08

Background: FALCON & BaseSampler

Algorithm 1: Sign(m, sk, [?]) Algorithm 2: ffSampling,(t,T)
Input :A message m, a secret Input :t= ()€
key sk, and a bound |3?| FFT(Q[a]/(z" +1))% T
Output : A signature sig of Output:z = (2,2;) €
message m FFT(Z[z]/(z" +1))?
1 r 4 {0, 1} uniformly 1: if n =1 then
2: ¢ + HashToPoint(r||m, ¢,n) 2: o' « T.value
3t (—LFFT(c) © FFT(F), 3 |z ¢ SamplerZ(tg,o’)
LEFT(c) © FFT()) 4 21 + SamplerZ(ty,o0")
N d:.n 5: return z = (29, 21)
5 do 6: (f,Tc,Tl) —)))
2 < ffSampling, (¢, T) (T.valug,T.Ieftchlld,T.rlghtchlld)
6= (t B Z)ﬁ 7.t Sp'ltﬁt(tl)

8: z ffSampling,, /5 (t1, T1)
0: 21 « mergefft(z,)

10: t:) —ty+ (tl - 21) [OY4

11: tg « splitffe(ty)

12: Zg ffSampIing"/z(tU,Tg)
13: 2o — mergefft(zo)

14: return z = (29, 21)

while ||s]|? > |4%]
(s1,82) «+ iIFFT(s)
10: S+
Compress(sq, 8 - shytelen — 328)
11: while s =1
12: return sig = (r,s)

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations

Background: FALCON & BaseSampler

Algorithm 3: SamplerZ(p, o’)

Algorithm 5: BaseSampler()

Input
Output: 2 € Z close to Dz, o
o= = |
2 €CS 4 Opin/0”
3: while (1) do
4 29 «— BaseSampler()
5. | b UniformBits(8) & 0x1
6: 2 b+(2-b—1)z

2 2
2T 2
& T L ‘2rr’“) 20, 3

8: if BerExp(z, ms)m; 1 then
o | return z + [p]

N ’ [
1y, 0" € R; 0" € [0min, Oumax

Algorithm 4: ApproxExp(x, ccs)

:z € [0,1n(2)]; ces € [0,1];
precomputed array C'
Output: An integer

~ 203 . ces - exp(—)

sy« C[o]

Cz e 203)

: fori=1to 12 do

| y«Clil—(z-y) > 63

Dz (203 ces)

sy (z-y) > 63

: return y

Input

P

Output: zg € {0,...,18}; zg ~ x

1: u < UniformBits(72)
2 294 0

3:
4
5

for i =0 to 17 do
| 20 ¢ 20+ [u < RCDTI]]

: return 2o

Algorithm 6: BerExp(z, ccs)

L - B SO CRe

Input :Floating point values
xyee8 >0
Output : A single bit, equal to 1
with probability
~ ces - exp(—x)

: s |z/In(2)]

sz —5-1n(2)

: 8 < min(s, 63)

2+ (2 - ApproxExp(r,ccs) — 1) > s

74— 64
do
i+ 1—8
w 4 UniformBits(8) — ((z >
i) & OxFF)

: while ((w =0) and (i > 0))
: return [w < 0]

Jipeng Zhang et al. (NUS)

Vectorized Falcon-Sign Software Implementations

Performance Profiling

Profiling Methodology

o Baseline: C-FN-DSA project (SHAKE256X4 Table: Breakdown of Execution Time
variant). FALCON-1024's signature generation.

Component AVX2 RISC-V
BaseSampler 30.2% 30.3%

@ Tool: gperftools.

e Platforms: Intel i7-11700K (AVX2) & FFT-related 15.1% 37.6%

SpacemiT X60 (RV64GCVB). SHA-3 226% 20.6%
Key Observations BerExp 31.2% 14.3%

e BaseSampler is a consistent bottleneck
(> 30%) across architectures. Optimization Targets

o FFT-related operations are expensive Based on this data, we focus on:
specifically on RISC-V (= 38%). © BaseSampler

o Note: SHA-3 is already optimized for AVX2; Q FFT-related ops (RISC-V only)

BerExp is left for future work.

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

Vectorized BaseSampler: Previous Methods on x86

e *ss,

int32_t *z_bimodal,
in *Z_square)

(&ss—pc);
(&ss—pc);

)(lo >> 48) | (hi << 16);

0; i< (GAUSS0) /
<

(vo - GAUSSO[i][2]) > 31;

(v1 - GAUSSO[i][1] - cc) >> 31;

(v2 - GAUsso[i][0] - cc) > 31;
z += (int32_t)cc;

thb=
*z_bimodal =
*z_square =

(8ss—pc) & 1;
b+ ((b<«<1)-1)*z
z % z;

C impl. in C-FN-DSA project (72 bits =
3%24 bits; 59 cycles without PRNG

overhead)

Jipeng Zhang et al. (NUS)

(GAusso[0]); i) {

gaussiano_avx2_ref(sampler_state *ss,

*z_bimodal,
*2_square)

lo = prng_next_u64(&ss—pc); hi = prng_next_u8(&ss—pc);
hi = (hi << 7)1 ()(lo > 57); lo &= Ox1FFFFFFFFFFFFFF;
_mm256_broadcastw_epil6(_mm_cvtsi32_si128(hi));
_mm256_loadu_si256(&rhi1s.ymm[@]);
_mm256_cmpgt_epil6(rhi, xhi); eqhi = _mm256_cmpeq_epil6(rhi, xhi);
_mm_srli_epil6(_mm256_castsi256_si128(gthi), 15);

_mm_setzero_si128();

_mm_hadd_epil6(t, zt); t
mm_hadd_epi16(t, zt); r
_mm256_broadcastq_epi64(_mm

_mm256_cmpgt_epi64(_mm256
_mm256_cmpgt_epi64(_mm256
_mm256_cmpgt_epi64(_mm256

_mm_hadd_epi16(t, zt);
_mm_cvtsi128_si32(t);
Vtsi6h_si128(*(
oadu_si256(r1057.ymm[0

*)610));
1

oadu_si256(&rlo57.ymm[1])
n
b
1

xl0);

xlo);

x10);

g xlo);
_mm256_cmpgt_epi64(_mm25 xlo);
_mm256_and_si256(

gtlod, _mm256_cvtepilé_epi64(_mm256_castsi256_sil28(eghi)));
_mm256_and_si256(
1, _mm256_cvtepil6_epi6i(
_mm256_castsi256_si128(_mm256_bsrli_epi128(eqhi, 8))));
_mm256_permutelx64_epi64(eqhi, 0xFF);
_mm256_and_si256(gtlo2, eqm); gtlo3 = _mm256_and_si256(gtlo3, eqm);
mm256_and_si256(gtlo4, eqm); gtlod = _mm256_or_si256(gtloo, gtlol);
_mm256_add_epi64(_mm256_add_epi64(gtlod, gtlo2),
_mm256_add_epi64(gtlo3, gtlo));
_mm_add_epi64(_mm256_castsi256_si128(gt100),
_mm256_extracti128_si256(gtlod, 1));
nm_add_epi64(t, _mm_srli_si128(t, 8));
-= _mm_cvtsi128_si32(t);
b = prng_next_u8(&ss—pc) & 1;
*z_bimodal = b + ((b << 1) - 1) * r; *z_square = r * r;

oadu_si256(rlo57.ymm[2
oadu_si256(r1057.ymn[3
oadu_si256(sr1057.ymm[4

AVX2 impl. in NIST submission (72 bits = 15 + 57 bits;
44 cycles without PRNG overhead)

Vectorized Falcon-Sign Software Implementations

2026-01-08

9/24

Vectorized BaseSampler: Previous Methods on ARMv38-A NEON

gaussian0_NG23(sampler_state ss, *2_bimodal,

gaussian@_ref(s T_! e *ss, int32_t *z_bimodal,
*z_square)

int32_t *z_square)

rng_next_u64(sss—pc); hi = prng_next_us(&ss—pc);
)t (

(&ss—pc); & OXFFFFFF; vl = (lo >> 24) & OxFFFFFF;
(&ss—pc); ‘(Lo >> 48) | (hi << 16); x0 = vdupa_n_u32(v0);
(uint32_t)lo & OxFFFFFF; vdupg_n_u32(v1); x2 = vdupq_n_u32(v2);
(uint32_t)(lo >> 24) & OxFFFFFF; " dzﬁbfzg?]?[m”élﬁ‘]’): szbq’:zié:ungiVT“)i
s : . vsubq_u32(x1, w.vi ; - _u32(x2,
(uint32_t)(lo >> 48) | (hi << 16); 4 w4 t)Vsraq.n:sa2((intazxi t)ect, (int
4_t)vsraqg_i 32((ir t)cc2, (int32
_n_u32(cc2, 31); w = vld}q u32[5d)5([12]],
vsubq_u32(x@, w.val[2]); ccl = vsubq_u32(x1, w.val[1l
GAUSSO) / (GAUsse[0]); i+) { vsubq_u32(x2, w.val[e]);
cc; (uint32 ((int32x4_t)ccl, (int32x4_t)cco, 31);
(vo - GAUSS@[i][2]) >> 31; ¢ ‘3;):5&521'&;;])- 31);
(vi - GAUSSO[i][1] - cc) > 31; vsubg_u32(xa, w.val[2]); g vsubq_u32(x1, w.val[1])
(v2 - GAusse[i][e] - cc) >> 31; subq_u32(x2, w.val[e]):
z += (int32_t)cc; 4_t)vsrag_n_s32(4_t)ccl, (int32x4_t)cco, 31);
2x4_t)vsrag_n_s32((1 t)cel, 31);

0; i< (

1D;

b (8ss—pc) & 1; 2
*Z7_| b)madal b+ ((b << 1) - 1) * z; i sraq_n_ (4_t)ccl, (int32x4_t)cco, 31);
*Z_square = z * z; i t3 t)cel, 31);
aq_n_u32(zz, cc2, 31); wh
sub_u32(vget_Low_u32(x0), w
sub_u32(vget_low_u32(x1), wh. \al[m,
. . . . sub, uzz(vget Tow_u32(x2), wh.val[e]);
- - —_ . 2.t _532((int32x2_t)ccth, (ir x2_t)ccoh, 31);
C impl. in C-FN-DSA (72 bits = 3x24 bits; o e gl o)
. ushrn u3z(cesh, 30); 2 = vaddvau32(s2) + vaddv.i32(zzh);
prng_next_ug(&ss—pc) & 1;

54 cycles without PRNG overhead) R S e

NEON impl. in [NG23] (72 bits = 3x24 bits; 59 cycles
without PRNG overhead)

2026-01-08 10/24

Vectorized Falcon-Sign Software Implementations

Jipeng Zhang et al. (NUS)

Vectorized BaseSampler: The Strategy

Challenge: Strict KAT compatibility enforces sequential PRNG usage.

Our Solution:
@ Relax KAT Compatibility: Does not affect interoperability with verification.
@ Batch Processing: Generate N samples at once (e.g., N = 16 for AVX2).
© Modular Design:

e Main computation loop vectorized.
e Bimodal transformation and squaring integrated.

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

The Trade-off

@ Vectorization requires parallel PRNG usage.

@ This breaks strict KAT compatibility (which mandates a
sequential PRNG order).

Why Interoperability is Preserved?

@ Our modification does not alter the specific Gaussian
distribution of the output vector s (line 7 of Alg. 1).

@ It preserves the rejection sampling condition (line 8 of
Alg. 1). The condition ||s||?> < [8?] remains strictly
satisfied.

* Note: The C-FN-DSA project employs a similar trade-off in its
SHAKE256X4 variant.

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations

Algorithm 1: Sign(m, sk, [52])

Tnput :A message m, a secret
key sk, and a bound |52]

Output: A signature sig of
message m

1+ {0,1}*2° uniformly

¢+ HashToPoint(r||m, ¢,)

t 4 (~LFFT(0) © FFT(E),
LFFT(c) & FFT(f))
do

do

2 « ffSampling, (t, T)
s=(t z)B
while [s]|* > |3%]
(51, 52) —TFFT(s)
s+
Compress(sz, 8 - sbytelen — 328)
while s = |
return sig = (r,s)

Figure: Alg. 1

Algorithm 7: Vectorized BaseSampler

Jipeng Zhang et al.

Output: N independent pairs (z, 23)
1 Constants:
2 N, = 4 for SSE2
3 N, = 8 for AVX2
4 N, = 16 for AVX-512F
5 M is an integer such that N = M - N,
6 RCDT__N,: RCDT in vectorized form
7 Variable declarations:
8 prn_24x3_N, prn[M]
9 ALIGNED_INT32(N) b
10 Z(][O],.,.,Z()[M—l] +«~0
11 // Prepare random numbers
12 for j <+ 0to M — 1 do
13 for i + 0 to N, — 1 do
14 for k <+ 0 to 2 do
pra[j).i32[k][i] «
UniformBits(24)
16 bs « UniformBits(V)
7 fori < 0to N —1do
8 | bi32[i] + (bs>> i) & 1
19 // Main computation loop

%)
=]

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

-
<)

Implementation on x86: Algorithm Overview

for i < 0 to 17 do

t; « RCDT_N.[{[0] // low 24-bit
tm < RCDT__N,Ji][1] // middle
tn + RCDT_N,[i][2] // high
for k< 0toM—1do

¢ < VSUB(prnk].v[0],t;)

c + VSRLI(c, 31)

¢ + VSUB(prnlk].v[1],c)

¢ « VSUB(c, t,,,)

c < VSRLI(c,31)

¢ + VSUB(prn[k].v[2],¢)

¢ < VSUB(c, ty,)

¢ < VSRLI(c,31)

2zg[k] VADD(zo[k], c)

// Bimodal and squaring

for k < 0 to M —1do

ty + b.v[k]

t) VADD(t;,,t',)

ty « VSUB(ty,1)

to < VMULLO(ty,zo[k])

z[k] + VADD(ts, t;)

2ollf? + VMULLO(z0 K], 20 4])
return (z(k], zo[k]?),k =0,...,M — 1

Vectorized Falcon-Sign Software Implementations

Implementation: x86 (SSE2, AVX2, AVX-512F)

Comparison Optimization
@ Reference: Requires subtraction with borrow on 3x24-bit integers.

@ SIMD: Use vpcmpgtd (Compare Packed Signed Integers Greater Than).

Instruction Scheduling
e SSE2/AVX2: Optimized using vpcmpgtd (Latency 1, CPI 0.5 on Rocket Lake).
e AVX-512F: Avoided vpcmpgtd due to higher latency (3 cycles).

@ Unrolling: Fully unrolled inner loops (for k <— 0 to M — 1) to enable instruction
interleaving and reduce pipeline stalls.

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

Implementation on RISC-V Vector (RVV): Algorithm Overview

18 // Main computation loop
19 for k+0to M —1do
Output: N independent pairs (z, z3) 20 | fori< 0to 17 do
Constants: 21 t; + RCDT__N,[i][0]
N, = 4 for NEON 22 tm < RCOT_N;[][1]

Algorithm 8: Vectorized BaseSampler

N, =8 for RVV with VLEN=256 28 tr ¢ RCDT_N.[i][2]
N—M-.N 24 ¢ + VSUB(prn[k].v[0],t;)
~ s 25 ¢ + VSRLI(c, 31)
26 ¢ + VSUB(prn[k].v[1],¢c)
Variable declarations: a7 ¢ + VSUB(c, t)
prn_24x3_N; prn[M] 28 ¢ + VSRLI(c,31)

1
2
3
4
5 RCDT_ N,
6
.
8
9

ALIGNED_INT32(N) b 2

¢ + VSUB(prn|k].v[2],c)

zo[0],...,z0[M —1] <0 30 ¢ + VSUB(c, ty)
10 // Prepare random numbers 31 ¢+ VSRLI(c, 31)
11 for j < 0to M —1 do 32 zo[k] VADD(ZUM’_C)
12 for i + 0 to N, — 1 do 33 // Bimodal and squaring
34 ty « b.vk|
13 for k& <—.0 _to 2 QO s t1 « VADD(ts, t5)
14 proj]i32[k][i] < a6 | t1 ¢ VSUB(t1.1)
UniformBits(24) 37 |ty < VMULLO(ty, zo[k])
15 bs + UniformBits(N) 38 z[k] « VADD(ty, t},)
16 fori+ 0to N —1do 30 | zp[k]? < VMULLO(zo[k], zo[K])
17 ‘ 0.132[i] + (bs > i) & 1 40 return (z[k],zo[k]?),k=0,..., M-1

Jipeng Zhang et al. (NUS)

Vectorized Falcon-Sign Software Implementations

Implementation: RISC-V Vector (RVV)

Constraints
@ RVV comparison instructions output to mask registers, not usable directly in arithmetic.

e vmsbc (subtract with borrow) has dependency chains through mask register vO.

Optimization Strategy
@ Hybrid approach: Pack 3 iterations into one macro.
@ Use direct subtraction (vsub, vsrl) for 2 iterations + borrow method for 1 iteration.

o Load-once-use-many: Keep RCDT table in vector registers (N = 64).

o 18 x 3 = b4 24-bit integer segments, where 12 segments are zero-valued.
e 24 scalar + 18 vector registers can hold 42 non-zero segments.
e vx-type instructions: vsub.vx v2, v1, t0.

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

Implementation: ARMv8 NEON

Overview
@ The implementation logic is nearly identical to the RVV version.
e Batch size: N = 64 (similar to RVV).

Register Allocation: Load-once-use-many

o Challenge: NEON lacks RVV's .vx feature (cannot use scalar registers as operands).
o Strategy:

o Persistently store 20 RCDT table entries in 20 vector registers.
o Load the remaining entries from memory on demand during execution.

Comparison Optimization

e Implemented using cmgt (Compare Greater Than).

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

Implementation: RV64IM

Strategy
@ Designed for RISC-V processors without RVV support.
e Adopts the Batch Processing strategy (N = 64).

o Partition 72-bit integer into High 8-bits + Low 64-bits. 16 for j + 0to N do
17 for i + 0 to 17 do
Load-once-use-many for RCDT table: 18 // Set to 1 if less than
19 C 4
o High 8-bits: All 18 entries fit into 12-bit signed SLTU(pral;].[0], RCD T [0])
immediates (e.g., encoded directly in addi). - ggfi"[,glc-%ﬁl]
o Low 64-bits: 22 e e> 63

23 20[4] + zo0[j] + ¢
o 2 entries are < 211, encoded via immediates.

o remaining 16 entries are stored in 16 registers. Figure: Part of Alg. 9

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

Vectorized FFT on RISC-V

Motivation: FFT is a major bottleneck on RISC-V (~38%).

Key Innovation: Strided Load/Store
@ RVV supports vise64.v (Vector Load Strided Element).
@ Minimal overhead compared to contiguous load (CPI 4 vs 3).

@ Allows flexible coefficient loading for deep layer merging.

Layer Merging Strategies
o FALCON-512: 444 merging (vs NEON's 2+2+4 in [NG23]).
e FALCON-1024: 445 merging (vs NEON’s 1424244 in [NG23]).

@ Directly construct coefficient arrangements in registers, minimizing memory access.

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

Results: BaseSampler Performance

Speedup compared to Reference Implementation (C-FN-DSA project)

Instruction Set Ref Cycles Our Cycles Speedup

SSE2 59 14 4.2x
AVX2 59 7 8.4x
AVX-512F 59 6 9.8x
NEON 54 30 1.8x
RVV 192 25 1.7x
RV64IM 192 51 3.8x

Note: The comparison excludes PRNG overhead to highlight sampler efficiency.

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

Results: FFT/iFFT on SpacemiT X60

Speedup compared to Reference Implementation (C-FN-DSA project)

Algorithm Impl. Strategy Cycles Speedup
Ref - 80,524 1.0x

FFT-1024 Qur RV64D 34343 27,115 3.0%
Our RVV 445 17,181 4.7x
Ref - 76,652 1.0x

iFFT-1024 Our RV64D 3+3+3 27,074 2.8x
Our RVV 544 17,974 4.3x

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

Results: FALCON-512 Signature Generation

Comparison with Reference Implementation (C-FN-DSA project)

Platform Instruction Set Ref (k) Our (k) Speedup

SSE2 631 556 1.13x

x86-64 AVX2 543 441 1.23x%
AVX-512F 536 393 1.36x

ARMv8 NEON 1,230 1,053 1.17x
RISC-V RV64GCB 2,535 1,867 1.36x
) RV64GCVB 2,530 1,590 1.59x

@ x86-64: Significant gains from vectorized BaseSampler & 8-way Keccak (AVX-512).
@ RISC-V: Massive speedup (1.59x) driven by RVV BaseSampler + FFT.
@ Note: Cycle counts in thousands (k).

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

Conclusion

@ We addressed the main bottlenecks in FALCON signature generation: BaseSampler and
FFT.

e Vectorized BaseSampler: Implemented across 6 ISAs, yielding massive speedups (up to
9.8x).

@ RVV FFT: Leveraged strided loads for 445 layer merging, achieving > 4x speedup.

e Final Result: Significant performance gains (up to 1.59x) for FALCON-{512,1024}
signature generation across x86, ARM, and RISC-V.

Paper: https://eprint.iacr.org/2025/1867
Artifact: https://github.com/Ji-Peng/VecFalcon
Slides: https://ji-peng.github.io/uploads/tches2026/VecFalcon_slides.pdf

Jipeng Zhang et al. (NUS) Vectorized Falcon-Sign Software Implementations 2026-01-08

https://eprint.iacr.org/2025/1867
https://github.com/Ji-Peng/VecFalcon
https://ji-peng.github.io/uploads/tches2026/VecFalcon_slides.pdf

Thank You!

Jipeng Zhang et al. (NUS) ized Falcon-Sign Software Implementations

	Contributions
	Motivations
	Background
	Vectorized BaseSampler
	Vectorized FFT (RISC-V)
	Results

