
Time-Memory Trade-Offs for Saber+ on
Memory-Constrained RISC-V Platform

Jipeng Zhang , Junhao Huang, Zhe Liu , Senior Member, IEEE, and Sujoy Sinha Roy

Abstract—Saber is amodule-lattice-based key encapsulation scheme that has been selected as a finalist in the NIST Post-Quantum

Cryptography standardization project. As Saber computes on considerably largematrices and vectors of polynomials, its efficient

implementation onmemory-constrained IoT devices is very challenging. In this paper, we present an implementation of Saber with a

minor tweak to the original Saber protocol for achieving reducedmemory consumption and better performance.We call this tweaked

implementation ‘Saber+’, and the difference compared to Saber is that we use different generationmethods of public matrixAA and secret

vector ss for memory optimization. Our highly optimized software implementation of Saber+ on amemory-constrained RISC-V platform

achieves 48% performance improvement compared with the best state-of-the-art memory-optimized implementation of original Saber.

Specifically, we present variousmemory and performance optimizations for Saber+ on amemory-constrained RISC-Vmicrocontroller,

with merely 16KB of memory available.We utilize the Number Theoretic Transform (NTT) to speed up the polynomial multiplication in

Saber+. For optimizing cycle counts andmemory consumption during NTT, we carefully compare the efficiency of the complete and

incomplete-NTTs, with platform-specific optimization.We implement 4-layersmerging in the complete-NTTand 3-layersmerging in the 6-

layer incomplete-NTT. An improved on-the-fly generation strategy of the public matrix and secret vector in Saber+ results in lowmemory

footprint. Furthermore, by combining different optimization strategies, various time-memory trade-offs are explored. Our software

implementation for Saber+ on selected RISC-V core takes just 3,809K, 3,594K, and 3,193K clock cycles for key generation,

encapsulation, and decapsulation, respectively, while consuming only 4.8KB of stack at most.

Index Terms—NTT, saber, memory optimizations, RISC-V, post-quantum cryptography, lattice-based cryptography

Ç

1 INTRODUCTION

AS the NIST Post-Quantum Cryptography (PQC) stan-
dardization process is coming to an end, the deploy-

ment of PQC schemes in real-world applications has become
a research hotspot in cryptographic engineering, especially
in the Internet of Things (IoT) scenarios millions of IoT devi-
ces have appeared in our daily life. Since UC Berkeley initi-
ated the RISC-V project in 2010, RISC-V has been greatly
developed due to its open-source and extensible properties.
With the collaboration of over 1000 international members,
including many famous companies such as Western Digital,
Qualcomm, Alibaba, Huawei [1], over 80 mature RISC-V
chips have beenmanufactured, andmany of them have been
prevalently used in IoT scenarios. The implementation
of PQC on RISC-V also attracts much attention. Many

hardware/software co-design based on RISC-V for PQC
schemes have been conducted [2], [3]. The NIST Lightweight
Cryptography Workshop (LWC) also uses RISC-V chips to
benchmark lightweight cryptography. However, the avail-
ability of PQC on IoT devices faces many challenges due to
the limited resources, low power consumption, and low fre-
quency of IoT devices.Many IoT devices have extremely lim-
ited resources, especially in Wireless Sensor Network
(WSN), which consists of millions of dedicated sensors act-
ing as environmental monitoring or target tracking [4], and
the available RAMof these commercial sensors is about 4KB-
32KB[5, Sec 5.4.7]. In order to solve the problem of PQC
deployment on memory-constrained RISC-V chips, this
paper provides a compact and optimized PQC implementa-
tion for the RISC-V chips.

Saber [6], one of the four key establishment finalists, is
based on the Module Learning with Rounding (Mod-LWR)
problem. Saber is quite similar to the Mod-LWE (Module
Learning with Errors [7]) based scheme Kyber [8]. Both of
them introduce a small-dimension matrix, contributing to a
more flexible PQC scheme than ideal lattice-based [9] schemes
such as NewHope [10]. Nevertheless, the public matrix in
Saber andKyber also increases the difficulty of deployment in
IoT devices. The significant difference between Saber and
Kyber is that Saber uses a power-of-two modulus (q ¼ 213),
which eliminates complex rejection sampling and modular
reduction. However, this modulus precluded the usage of the
Number Theoretic Transform (NTT) from accelerating poly-
nomial multiplication in the original proposal. The original
polynomial multiplication, Toom-Cook-Karatsuba-School-
book adopted by Saber, is asymptotically slower than NTT

� Jipeng Zhang and Zhe Liu are with the Nanjing University of Aeronau-
tics and Astronautics, Nanjing, Jiangsu 211106, China.
E-mail: jp-zhang@outlook.com, zhe.liu@nuaa.edu.cn.

� Junhao Huang is with the Beijing Normal University-Hong Kong Baptist
University United International College, Zhuhai, Guangdong 519087,
China. E-mail: jhhuang_nuaa@126.com.

� Sujoy Sinha Roy is with the Graz University of Technology, 8010 Graz,
Austria. E-mail: sujoy.sinharoy@iaik.tugraz.at.

Manuscript received 8 Oct. 2021; revised 18 Dec. 2021; accepted 9 Jan. 2022.
Date of publication 14 Jan. 2022; date of current version 10 Oct. 2022.
This work was supported in part by the National Key R&D Program of China
under Grant 2020AAA0107703, in part by the National Natural Science
Foundation of China under Grant 62132008 and CCF-Tencent Open Fund.
The work of Jipeng Zhang was supported in part by 2021 Tencent Rhino-Bird
Research Elite Training Program.
(Corresponding author: Zhe Liu.)
Recommended for acceptance by D. Liu.
Digital Object Identifier no. 10.1109/TC.2022.3143441

2996 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 11, NOVEMBER 2022

 apply.

https://orcid.org/0000-0002-0679-7212
https://orcid.org/0000-0002-0679-7212
https://orcid.org/0000-0002-0679-7212
https://orcid.org/0000-0002-0679-7212
https://orcid.org/0000-0002-0679-7212
https://orcid.org/0000-0001-8578-2635
https://orcid.org/0000-0001-8578-2635
https://orcid.org/0000-0001-8578-2635
https://orcid.org/0000-0001-8578-2635
https://orcid.org/0000-0001-8578-2635
mailto:jp-zhang@outlook.com
mailto:zhe.liu@nuaa.edu.cn
mailto:jhhuang_nuaa@126.com
mailto:sujoy.sinharoy@iaik.tugraz.at

and consumes more memory, which is unfriendly to mem-
ory-constrained devices. Therefore, the introduction of NTT
for Saber allows us to speed up Saber’s polynomial multipli-
cation onmemory-constrained devices [11].

Motivation. This paper aims to explore various time-
memory trade-offs on memory-constrained RISC-V-based
devices. Polynomial multiplication is not only a critical per-
formance factor but also affects the memory footprint of
Saber. The Toom-Cook-based polynomial multiplication in
the Saber’s reference implementation [12] and related opti-
mization work [13], [14] achieves excellent performance, but
its memory footprint is quite large. [13, Sec 2.2.3] and [14, Sec
4.2] use four levels of Karatsuba recursion to achieve very
small memory consumption, but there is a significant perfor-
mance penalty. NTT’s adaptation for Saber [11, Sec 3.1]
opens a new window for exploring various time-memory
trade-offs due to significant advantages of NTT over Toom-
Cook in terms of time and memory. However, Saber’s origi-
nal incompatibility with NTT brings some memory penal-
ties. For example, in the Saber.PKE.KeyGen stage, we need
to store the original secret vector for subsequent usage and
also store the NTT-domain counterpart for computing
matrix-vector multiplication. For Saber, only 32-bit NTT is
feasible, so storing polynomials in the NTT domain has a
higher memory footprint than the 16-bit NTT in Kyber and
NewHope. The performance optimization of NTT has been
thoroughly studied, including optimization on the RISC-V
platform [15]. However, the performance of NTT in Saber is
not the only goal. Its memory optimization is also crucial.
Moreover, there is no relevant work to study how to elimi-
nate the side effects of NTT’s adaptation for Saber as far as
we know.

Contributions. Our contributions in this work can be sum-
marized as below:

1) We introduce two tweaked GenA and a tweaked
GenS strategies over the framework of Saber, and we
call the tweaked Saber as Saber+. More specifically,
we propose an on-the-fly generation strategy for
Saber+’s secret vector (on-the-fly GenS). This tech-
nique allows us to store merely one polynomial
instead of the entire secret vector. We improve previ-
ous on-the-fly generation of the public matrix (on-
the-fly GenA) proposed in [13, Sec 2.2.1]. Besides,
inspired by Kyber’s GenA implementation1, we pro-
pose an out-of-order GenA technique for Saber+.
This technique breaks the restriction on the genera-
tion order of the public matrix, and its combination
with the on-the-fly GenS achieves an excellent time-
memory trade-off.

2) Based on the techniques mentioned above and differ-
ent memory allocation schemes for the secret vector,
we propose three strategies for computing matrix-
vector multiplication. These three strategies present
different time-memory trade-offs, and it is worth
mentioning that they can perfectly meet the individ-
ual memory requirements of LightSaber+, Saber+,
and FireSaber+.

3) We review the selection of NTT parameters and con-
struct a new set of parameters for Saber+, which can
also be used in the original Saber. Our new selection
can eliminate the modular reduction after the addi-
tion operation in Gentleman-Sande butterflies and
achieve better performance in the 6-layer NTT
implementation.

4) We carefully analyze the efficiency of the complete-
NTT and various incomplete-NTTs from both arith-
metic and implementation perspectives. We imple-
ment the complete-NTT, 7-layer NTT, 6-layer NTT,
and 5-layer NTT with hand-written assembly and
conclude that the 6-layer NTT is most efficient for all
variants of Saber+ on the selected platform. All our
NTT optimizations are also suitable for the original
Saber.

Same with Saber’s reference implementation, our imple-
mentation is constant-time and does not have any secret
dependent branching or secret dependent memory accesses.

Organization of the Paper. Section 2 describes the Saber
scheme, polynomial multiplication, and our target platform.
Section 3 presents the efficient implementation of Montgom-
ery reduction, the parameters selection of NTT, comparisons
of the complete-NTT and various incomplete-NTTs, and effi-
cient layers merging techniques. Section 4 describes our
improved on-the-fly generation of the public matrix and
secret vector, explores various time-memory trade-offs, and
clarifies the differences between Saber+ and Saber. In Sec-
tion 5, we compare the performance and stack usage of our
optimized implementationwith previouswork.

Availability of Our Software. All source codes are available
at https://github.com/Ji-Peng/Saber_RV32

2 PRELIMINARIES

2.1 Saber KEM

Saber [6], [12], due to its high security, flexibility, and sim-
plicity, was selected for the final round and became one of
the four KEMfinalists in theNIST PQC standardization com-
petition. The IND-CCA secure Saber.KEM scheme is based
on the IND-CPA secure public-key encryption (Saber.PKE)
scheme with the help of Fujisaki-Okamoto transforma-
tions [16] and some symmetric cryptographic primitives [17].
The IND-CPA secure Saber.PKE scheme is illustrated in
Algorithms 1, 2, and 3 and we refer the readers to [12] for
details about Saber.KEM scheme since the optimizations in
this papermainly applied to the Saber.PKE scheme.

Saber and Kyber, as two of the four KEM finalists, are
both constructed with module lattices, which demonstrates
that the security and efficiency of the PQC schemes based
on module lattices have been widely recognized compared
with the pure LW{E,R} [18], [19] or Ring-LW{E,R} [9] prob-
lems. The IND-CPA security of Saber.PKE is reduced from
the Mod-LWR problem [7], which is a module version of
the LWR problem by introducing a small l-dimensional
matrix and two fixed power-of-two moduli p; q. Formally, a
Mod-LWR sample is given by

AA; b ¼ p

q
ðAATssÞ

� �� �
2 Rl�l

q �Rl�1
q (1)1. gen_matrix routine in https://github.com/pq-crystals/kyber/

blob/master/ref/indcpa.c

ZHANG ETAL.: TIME-MEMORY TRADE-OFFS FOR SABER+ ON MEMORY-CONSTRAINED RISC-V PLATFORM 2997

 apply.

https://github.com/Ji-Peng/Saber_RV32
https://github.com/pq-crystals/kyber/blob/master/ref/indcpa.c
https://github.com/pq-crystals/kyber/blob/master/ref/indcpa.c

where the secret vector ss is sampled from the centered bino-
mial distribution bmðRl�1

q Þ and the public matrix AA is sam-
pled from the uniform random distribution UðRl�l

q Þ. The
decisional Mod-LWR problem states that it is hard to distin-
guish whether the ðAA; bÞ are generated by the Mod-LWR dis-
tribution or the uniform random distribution UðRl�l

q �Rl�1
q Þ.

The two fixed power-of-two moduli p and q not only avoid
the noise sampling and rejection sampling but also eliminate
the explicit modular reduction when computing polynomial
multiplication, which significantly simplifies the scheme.
The three variants of Saber, namely LightSaber, Saber, and
FireSaber, use the module dimensions l=2, 3, and 4. They all
share the same underlying arithmetic operations, which fur-
ther demonstrates Saber’s flexibility. Saber defines three con-
stant polynomials h, h1, and h2 to simplify rounding
operations into simple shift operations. As described in line
5 of Algorithm 1 and line 6 of Algorithm 2, the noise in Saber.
PKE scheme is deterministically generated by using simple
and efficient shift operations to scale down from modulus q
to modulus p. The parameters �p; �q; �T in Algorithms 1, 2,
and 3 satisfy p ¼ 2�p ; q ¼ 2�q and T ¼ 2�T respectively. More
details about these constants can be found in [12].

Algorithm 1. Saber.PKE.KeyGen() [12]

1: seedAA Uðf0; 1g256Þ
2: AA ¼ gen seedAAð Þ 2 Rl�l

q

3: r Uðf0; 1g256Þ
4: ss ¼ bmðRl�1

q ; rÞ
5: bb ¼ ððAATssþ hhÞmod qÞ � �q � �p

� � 2 Rl�1
p

6: 7: return pk :¼ bb; seedAAð Þ; sk :¼ ðssÞð Þ

Algorithm 2. Saber.PKE.Enc(pk ¼ ðbb; seedAAÞ;m 2 R2; r) [12]

1: AA ¼ gen seedAAð Þ 2 Rl�l
q

2: if r is not specified then
3: r Uðf0; 1g256Þ
4: end if
5: ss0 ¼ bmðRl�1

q ; rÞ
6: bb0 ¼ AAss0 þ hhð Þmod qð Þ � �q � �p

� � 2 Rl�1
p

7: v0 ¼ bbT ss0mod pð Þ 2 Rp

8: cm ¼ v0 þ h1 � 2�p�1mð Þmod pð Þ � �p � �T
� � 2 RT

9: return c :¼ cm; b
0b0ð Þ

The generation of the public matrix AA (GenA) and secret
vector ss (GenS) in Algorithms 1 and 2 are implemented by
the eXtend Output Function (XOF). In Saber, SHAKE-
128 [20] is used to produce pseudo-random bytes, which
are further used to generate the uniformly distributed pub-
lic matrix and the centered binomial distributed secret vec-
tor. The SHAKE-128 adopts a sponge construction, which
absorbs an initial seed into the Keccak state using kecca-
k_absorb(). After that, the keccak_squeezeblocks() is used to
generate the pseudo-random bytes, where the size of each
pseudo-random block is 168 bytes. Depending on whether
the polynomial generation sequence is the same in AA and
ATAT , GenA can be performed in two ways: in-order GenA
and out-of-order GenA. Saber adopts the in-order GenA
strategy while Kyber adopts the out-of-order GenA by
attaching coordinates ði; jÞ into the initial seed, and the
detailed difference is given in Section 4.4. Each strategy has

its advantages and disadvantages. The first scheme only
needs to absorb once, and the matrix generation fully uti-
lizes each pseudo-random block without wasting any
pseudo-random bytes. Hence, when generating the public
matrix AA, fewer keccak_squeezeblocks() will be called.
Although the out-of-order GenA causes a minor perfor-
mance decrease compared with the in-order GenA, this
strategy enables an excellent time-memory trade-off with
the help of the on-the-fly GenS (see Sections 4.4 and 4.5).

Algorithm 3. Saber.PKE.Dec(ss; c ¼ cm; b
0b0ð Þ [12])

1: v ¼ bb0T ðssmod pÞ 2 Rp

2: m0 ¼ v� 2�p��T cm þ h2ð Þmod pð Þ � �p � 1
� � 2 R2

3: returnm0

2.2 Polynomial Multiplication

Although the choice of the power-of-twomoduli p; q simpli-
fies the Saber scheme, the original power-of-two modulus
q ¼ 213 excludes the use of the asymptotically faster NTT
based multiplication. Therefore, the reference implementa-
tion of Saber [12] combined Toom-Cook and Karatsuba (TC/
K) multiplication algorithms to accelerate the polynomial
multiplication in Rq. Recently, Chung et al. [11, Sec 3.1]
adapted NTT for Saber, NTRU [21], and LAC [22] and
achieved superior performance compared with the previous
TC/K multiplication implementation. NTT provides a per-
fect solution for Saber’s implementation on memory-con-
strained IoT microcontrollers regarding memory footprint
and efficiency. We refer the readers to [13, Sec 2.1] and [14,
Sec 2] for the details about TC/Kmultiplication algorithm.

2.2.1 Number Theoretic Transform

The premise of using NTT inRq ¼ Zq½X�= Xn þ 1ð Þ is that q is
a prime number. When q satisfies q � 1mod 2n, there exists a
2n-th primitive root of unity, thus the complete-NTT trans-
formation is available. Considering the polynomial X256 þ 1
in Kyber and Saber, the complete-NTT transformation
means that we can factor the polynomial X256 þ 1 into 256
polynomials of degree-0 modulo q. Let’s denote the set of all
512-th roots of unity as z; z3; z5; . . . ; z511

� 	
. Then, the polyno-

mialX256 þ 1 can be decomposed as

X256 þ 1 ¼
Y255
i¼0

X � z2iþ1
� � ¼Y255

i¼0
X � z2br8ðiÞþ1

 �
; (2)

where br8ðiÞ denotes the bit-reversal of an unsigned 8-bit inte-
ger i. After the complete-NTT transformation, the polynomial
f 2 Rq is decomposed into 256 polynomials of degree-0,
which can bewritten as

NTTðfÞ ¼ f̂ ¼ ðf̂0; f̂1; � � � ; f̂255Þ
with

f̂2i ¼
X255
j¼0

f2jz
2br8ðiÞþ1ð Þj; f̂2iþ1 ¼

X255
j¼0

f2jþ1z 2br8ðiÞþ1ð Þj: (3)

The product of two polynomials f; g can be performed
by first transforming f; g into the NTT domain, and then

2998 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 11, NOVEMBER 2022

 apply.

performing the point-wise base multiplication for 256 poly-
nomials of degree-0 modulo X � z2br8ðiÞþ1. After that, the
INTT (invert NTT) transformation is conducted to convert
the NTT-domain result ĥ ¼ f̂ 	 ĝ back to the standard
domain. The whole process can be described as f � g ¼
INTTðNTTðfÞ 	 NTTðgÞÞ.

Recent research [23] found that even though the prime q
doesn’t satisfy 2njðq � 1Þ, the polynomial multiplication can
still be accelerated by utilizing NTT. When q is a prime
number and satisfies njðq � 1Þ or ðn=2Þjðq � 1Þ, there is only
n-th or n=2-th primitive root instead of 2n-th primitive root.
Therefore, the polynomial cannot perform the complete-
NTT transformation but can perform incomplete 7-layer or
6-layer NTT transformation for n ¼ 256, eliminating the
final one or two NTT layer(s). The NIST PQC Round2 sub-
mission of Kyber [24] adopted the incomplete 7-layer NTT
by modifying the prime q from 7681 to 3329, which satisfies
256jð3329� 1Þ. Therefore, it terminates the NTT transforma-
tion in the final layer.

2.3 Target Platform: E31 RISC-V Core

Our target platform is the SiFive Freedom E310 board
equipped with a 32-bit E31 RISC-V core. It is a real-world
memory-constrained RISC-V device, with merely 16KB
memory available. Its register file consists of 32 32-bit regis-
ters, among which 30 registers (t0
 t6, s0
 s11, a0
 a7, ra,
gp, tp) are available for programming, while the other two
registers (zero, sp) are reserved registers. The instruction set
of this microcontroller belongs to RV32IMAC in RISC-V ISA
standard, including the basic integer (I), integer multiplica-
tion and division (M), automatics (A), and 16-bit com-
pressed instructions (C). Although it has more available
registers than other CPU processors, there is no flag register
to hold carry flag and overflow flag. Therefore, when using
the basic integer instructions to compute big number addi-
tion or subtraction, an extra instruction sltu or bltu is
required to handle carry or overflow, which results in sig-
nificant overhead. In order to compute the sum of two 64-
bit integers, at least four instructions are used, while other
processors can complete it in just two instructions with the
help of the carry flag. As for the RISC-V integer multiplica-
tion and division module, E31 is equipped with some 5-
cycle multiplication instructions. A 32-bit multiplication is
performed by mul and mulh instructions. Both mul and
mulh cost 5 cycles. The instructions of RV32IMAC are
inherently constant-time except the division instruction. It
should be noted that most of the discussion on register
usage targets optimization for the RISC-V Instruction Set
Architecture (ISA) and can be applied to any 32-bit RISC-V
device. Apart from that, the discussion on instruction
latency, memory latency, instruction caches, and flash mem-
ory aims at the selected RISC-V devices. Our analysis
method can be used for other (different micro-architecture)
RISC-V platforms by tweaking the cycle counts of corre-
sponding instructions.

One might question the selection of a RISC-V device with
such limited memory. We want to emphasize our reasons
for choosing E31 core. First, as the rapid development of the
open-source RISC-V ISA, implementing cryptographic algo-
rithms on RISC-V devices has become a research hotspot.
The NIST LWC group also recommends RISC-V as one of

the benchmark platforms. As far as we know, there are very
limited researches conducted on the software implementa-
tion of PQC schemes, especially Saber, on RISC-V devices.
As for the memory restriction, we believe choosing a real-
world memory-constrained device will obtain realistic and
accurate experimental results and provide a good reference
for deploying PQC schemes in resource-constrained appli-
cation scenarios.

3 PERFORMANCE OPTIMIZATION

In this section, we first present an optimized implementation
of Montgomery reduction. We then discuss the choice of
NTT parameters and carefully compare the performance of
the complete-NTT and various incomplete-NTTs from arith-
metic and implementation perspectives. [11, Sec 3.1] first
adapted NTT-based polynomial multiplication for Saber,
and their results showed that NTT outperforms previous
Toom-Cook on Cortex-M4 and Intel platforms.

3.1 Efficient Implementation of the Montgomery
Reduction

TheMontgomery reduction can efficiently computemodular
reduction without using division instructions, and its execu-
tion is constant-time. A signed Montgomery reduction was
presented in [25, Alg 3]. As a result of using the 32-bit NTT,
our Montgomery reduction takes a 64-bit signed integer as
input and outputs a 32-bit result ranging from �M to M,
where M is the modulus in our NTT implementation. The
details about the signed Montgomery reduction on RISC-V
are given in Algorithm 4.

Algorithm 4. Signed Montgomery Reduction on 32-bit
RISC-V, b ¼ 232

Require: a ¼ ah2
32 þ al, and � b

2M � a < b
2M where M is the

modulus in our NTT implementation
Ensure: t ¼ b�1a mod M, and �M < t < M
1: mul al; al; M 0 ⊳M 0 ¼M�1

2: mulh al; al; M
3: sub t; ah; al
4: return t

3.2 Parameters Selection of NTT

To adapt NTT for Saber, we need to pick a prime M, which
must be larger than the largest intermediate value produced
by Saber’s polynomialmultiplicationwithoutmodular reduc-
tion. The parameter m is equal to 10, 8, and 6 for LightSaber,
Saber, and FireSaber, respectively, whichmeans that the coef-
ficients of a noise polynomial range from -5/-4/-3 to 5/4/3.
We convert the polynomial coefficients in Zq into a signed
centered representation for getting a more compact range
boundary, and our NTT implementation is also performed
over signed integers. Thanks to Saber’s power-of-two modu-
lus q ¼ 213, it is very efficient to convert ai 2 ½0; qÞ to the cen-
tered representation, arithmetic shift left by 3 bits and then
arithmetic shift right by 3 bits to get a0i 2 ½� q

2 ;
q
2� with a 16-bit

signed representation. The polynomial multiplication a � s
without modular reduction produces a maximum intermedi-
ate value 5 � q2 � n and aminimum intermediate value�5 � q2 � n,

ZHANG ETAL.: TIME-MEMORY TRADE-OFFS FOR SABER+ ON MEMORY-CONSTRAINED RISC-V PLATFORM 2999

 apply.

where a 2 Rq and s is a noise polynomial. So we get the first
restriction onM

M � 2 � 5 � q
2
� n ¼ 10485760 (4)

The forward NTT uses Cooley-Tukey (CT) butterflies,
and the invert NTT uses Gentleman-Sande (GS) butterflies
in our implementation. The input of CT butterflies is in nor-
mal order, while the output is in bit-reverse order. GS but-
terflies are just the opposite. Given two integers a and b as
the input, the CT butterflies compute aþ g � b; a� g � b and
the GS butterflies compute aþ b; ða� bÞ � g. Montgomery
multiplication is used when computing g � b and ða� bÞ � g,
and they are both range from �M to M. So, the coefficients
of CT butterflies increase by M after each addition, but they
are doubled in GS butterflies. For example, suppose the
input ranges from �x to x, after continuous y-layer GS but-
terflies without modular reduction, the output ranges from
�x � 2y to x � 2y. If x � 2y > 231, then a modular reduction of
the addition result is necessary for avoiding overflow from
a 32-bit signed integer. In order to eliminate these additional
modular reductions in GS butterflies, we get another restric-
tion on M, x � 2y < 231, where x is the maximum value of
INTT’s input, and y is the number of layers of NTT.

In our implementation, only the 6-layer NTT is adopted.
The input of the INTT is the result of the base multiplication,
which ranges from �2M to 2M. We get the final range limit:
M � 2 � 5 � q2 � n and 2M � 26 < 231, that is, 5 � q � n �M <
224. In the end, our choice isM ¼ 10487809 ¼ 512 � 20484þ 1
such that 2n j ðM � 1Þ and the underlying field Zq contains a
2n-th primitive root of unity. Such M can implement both
the complete-NTT and various incomplete-NTTs.

3.3 Arithmetic Analysis of Incomplete-NTTs

Recent research [23] shows that it is not necessary to pick an
M, which satisfies 2n j ðM � 1Þ, to obtain the complete-NTT.
When n ¼ 256 ¼ 28, the complete-NTT also refers to 8-layer
NTT. The modulus of Kyber changed from 7681 to 3329 such
that 256 j ð3329� 1Þ in NIST PQC Round 2 submission [24],
which means that only 7-layer NTT is available. And related
work [11], [26] also shows the effectiveness of incomplete-
NTTs. To explain why incomplete-NTTs can even outper-
form the complete-NTT, we carefully analyze the overhead
of the complete-NTT and the incomplete l-layer NTT
(l ¼ 5; 6; 7) from an arithmetic perspective.

In the following, we use M64 to represent the multiplica-
tion of multiplying two 32-bit operands to obtain a 64-bit
product, and A64 represents a 64-bit long integer addition.
On the selected RISC-V platform, M64 is implemented by
two multiplication instructions, mul and mulh, where mul/
mulh computes the low-/high-limb of the 64-bit product
and they both have a 5-cycles delay on the selected RISC-V
platform. As described in Section 2.3, computing A64 con-
sumes 4 basic instructions.

We use MontMul to represent a Montgomery multiplica-
tion, whose computation consumes an M64 and a Montgom-
ery reduction (MontR). For example, c ¼ MontMulða; bÞ is
equivalent to c � a � b mod M. According to Algorithm 4,
we can express the overhead of a Montgomery reduction as
MontR ¼ 1M64þ 1A32, where A32 represents all single-cycle

instructions, including addition, subtraction, shift, and con-
ditional set instructions. So the overhead of MontMul is
M64þMontR ¼ 2M64þ 1A32. We use < i; j > to briefly repre-
sent the overhead of iM64þ jA32, whose computation con-
sumes 10iþ j cycles on the selected platform. For example, the
overhead of MontR=MontMul is < 1; 1 > = < 2; 1 > . The com-
putation of one CT or GS butterfly consumes oneMontMul and
two A32, i.e., butterfly ¼< 2; 3 > . Each layer ofNTT/INTT con-
tains n

2 butterflies, so the overhead of one layer can be
expressed as layer ¼ n2 < 2; 3 >¼< 256; 384 > .

Base Multiplication in the Complete-NTT.The overhead of
base multiplication in the complete-NTT is nMontMul ¼ n< 2;

1 >¼< 512; 256>.
Base Multiplication in the 7-Layer NTT. For the 7-layer

NTT, the base multiplication is implemented by a polyno-
mial multiplication of degree-1, that is, c ¼ c0 þ c1x ¼
ða0 þ a1xÞ � ðb0 þ b1xÞ mod ðX2 � gÞ, where g is a specific
power of z. In detail, c0 ¼ MontMulða0; b0Þ þ MontMulðMontMul

ða1; b1Þ; gÞ and c1 ¼ MontRða0b1 þ a1b0Þ, where the calcula-
tion of c1 uses lazy reduction technique. So the overhead of
the base multiplication in the 7-layer NTT is

n

2
ð3MontMulþ 2M64þ 1MontRþ 1A64þ 1A32Þ

¼< 1152; 1152>:

Base Multiplication in the 6-Layer NTT. The base multiplication
of degree-3 in the 6-layer NTT can be expressed as c ¼
ða0 þ a1xþ a2x

2 þ a3x
3Þ � ðb0 þ b1xþ b2x

2 þ b3x
3Þ mod ðX4 �

gÞ. Details about this base multiplication is described in
Algorithm 5. The calculation of c0, c1, and c2 have the same
overhead because MontMul ¼ M64þMontR, and their overhead
is

2MontMulþ 1MontRþ 3M64þ 2A64þ 1A32 ¼< 8; 12 >

The calculation of c3 can make full use of the lazy reduction,
and its overhead is

1MontRþ 4M64þ 3A64 ¼< 5; 13 >

Therefore, the overall overhead of the base multiplication in
the 6-layer NTT is

n

4
ð3 < 8; 12 > þ < 5; 13 > Þ ¼< 1856; 3136 >

Base Multiplication in the 5-Layer NTT. For the 5-layer
NTT, the base multiplication is implemented by a polyno-
mial multiplication of degree-7. According to Algorithm 5,
the overhead of c0; c1; :::, and c6 is equal, and their overhead
is

2MontMulþ 1MontRþ 7M64þ 6A64þ 1A32 ¼< 12; 28 >

The overhead of c7 is 1MontRþ 8M64þ 7A64 ¼< 9; 29 > , so
the overall overhead of the base multiplication in the 5-layer
NTT is

n

8
ð7 < 12; 28 > þ < 9; 29 > Þ ¼< 2976; 7200 > :

Complete-NTT Versus Incomplete-NTTs. The early termination
of NTT can reduce the overhead of computing NTT and
INTT, but the overhead of the base multiplication will

3000 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 11, NOVEMBER 2022

 apply.

increase. So we need to judge whether the reduced overhead
of computing NTT and INTT can outnumber the increased
overhead of computing base multiplication. In Table 1, we
give the increased and reduced overhead of incomplete-
NTTs compared with the complete-NTT. For example, com-
pared with the complete-NTT, the increased overhead of
base multiplication in the 7-layer NTT is < 640; 896 >¼
7296 cycles. Moreover, the overhead of one layer in NTT is <
256; 384 >¼ 2944 cycles. One full polynomial multiplication
is composed of 2 NTT, 1 INTT, and base multiplication, so
terminating NTT 1-layer earlier can reduce the overhead of 3
layers, which consume 3� 2; 944 ¼ 8; 832 cycles. Obviously,
the 7-layer NTT outperforms the complete-NTT by 1,536
cycles. Similarly, the 6-layer NTT is 1,344 cycles faster than
the complete-NTT but slower than the 7-layer NTT. The 5-
layer NTT is not a wise choice because the increased over-
head is more than the reduced overhead. The above analysis
aims to provide an insight into why incomplete-NTTs are
faster than the complete-NTT from an arithmetic point of
view. From an implementation perspective, our experimen-
tal results show that the 6-layer NTT is the fastest, because 3-
layer merging in 6-layer NTT can use registers more effi-
ciently than 4-layer merging in 7-layer NTT, andwewill give
a detailed discussion in Section 3.4. When computing a
matrix-vector multiplication, the ratio of NTT/INTT to base
multiplication is different, and we will re-discuss the choice
of complete-/incomplete-NTTs in Section 4.

Algorithm 5. Base Multiplication in l0-layer NTT

Require: Degree-ðn0 � 1Þ polynomial a ¼Pi <n0�1
i¼0 aix

i and
b ¼Pi<n0�1

i¼0 bix
i with n0 ¼ 28�l

0

Ensure: c ¼Pi<n0�1
i¼0 cix

i ¼ a � b mod ðXn0 � gÞ
1: cj ¼ MontMulðMontRðPi�n0�1

i¼jþ1 aibn0þj�iÞ; gÞþ
MontRðPi�j

i¼0 aibj�iÞ for j 2 ½0; n0 � 1Þ
2: cn0�1 ¼ MontRðPi�n0�1

i¼0 aibn0�1�iÞ

3.4 NTT Optimization Techniques

The layer merging technique can improve the performance of
NTT by reducingmemory accesses. On aCortex-M4platform,
there are only 16 general-purpose 32-bit registers, of which
developers can only use 14. However, the 4-layer merging is
still possible by packing sixteen 16-bit coefficients into eight
32-bit registers with the support of Single InstructionMultiple
Data (SIMD) instructions [26, Sec 3.1]. On a RISC-V platform,
30 of the 32 32-bit registers are available to developers, so the
4-layer merging that needs to hold 16 coefficients is feasible.
For the usage of registers, three registers are used for function
parameters, two registers are used to store temporary values
when computing the butterfly unit, and two registers are used
to hold the constants M and M 0 in Montgomery reduction.

The remaining 23 registers are used to control the loop and
hold polynomial coefficients and twiddle factors.

3-Layer Merging. When computing the 6-layer incom-
plete-NTT, we merge six layers as 3+3. We need two regis-
ters to control the inner and outer loops, and the remaining
registers are enough for holding eight polynomial coeffi-
cients and seven twiddle factors. The 6-layer INTT is
merged in the same manner.

4-Layer Merging. When computing the 8-layer complete-
NTT, we merge eight layers as 4+4. We only need one regis-
ter to control the single loop, and 16 registers are used to
hold the polynomial coefficients. So there are only six regis-
ters left to load twiddle factors, but in the first 4-layer merg-
ing, the same 15 twiddle factors are reused 16 times. We
keep five of these twiddle factors in registers, and the
remaining one register is used to load the other ten twiddle
factors on demand. Merging as 3+3+2 is not cost-effective
because 256 additional load and store operations are
needed. The 5-layer and 7-layer NTT can be merged as 3+2
and 3+4, respectively. The 2-layer merging is easy to imple-
ment because fewer registers are required.

Precomputation of Twiddle Factors. It is common to store all
Montgomery-domain twiddle factors in flash memory2, but
our rough estimate shows that it takes about 200 cycles to
load a word from the flash memory on SiFive freedom
E310. The overhead of loading all twiddle factors from flash
memory is unacceptable. So we decide to store all the twid-
dle factors in writable memory (RAM) for better perfor-
mance3, and loading a word from the writable memory
takes only two cycles on the selected platform. In this way,
our link script will place and maintain the twiddle factors in
a certain RAM area, occupying 0.75KB (NTT, base multipli-
cation, and INTT need 64 32-bit twiddle factors, respec-
tively) RAM for the 6-layer NTT. Besides, we reorder these
twiddle factors in the same order as they are used. More-
over, we can reduce half of the multiplication with n�1 dur-
ing the last layer in INTT by multiplying the last twiddle
factor with n�1, where n ¼ 64 for the 6-layer NTT.

4 MEMORY OPTIMIZATION

The public matrix AA, secret vector ss and matrix-vector mul-
tiplication consume a considerable amount of memory. Pre-
vious work [13, Sec 2.2.1] proposed an on-the-fly generation
strategy for the public matrix AA (on-the-fly GenA or just-in-
time GenA) to reduce the memory footprint of AA in Saber,
and they also optimized the memory footprint during the
secret vector generation. However, their on-the-fly GenA
strategy is quite complicated due to the need of processing
the leftover bytes. Therefore, this section improves their on-
the-fly GenA by designing a simpler method to deal with
the leftover bytes and proposes a new out-of-order GenA
technique for Saber+. Our method does not affect the nature
of the mathematical distribution of AA. Moreover, we pro-
pose an on-the-fly generation strategy for the secret vector ss
(on-the-fly GenS). Based on the techniques mentioned above
and different memory allocation schemes for the secret

TABLE 1
Increased (Inc) and Reduced (Red) Overhead of

Incomplete-NTTs Compared With the Complete-NTT

Incomplete-NTT Inc Overhead Inc Cycles Red Cycles

7-layer NTT < 640; 896 > 7,296 8,832
6-layer NTT < 1344; 2880 > 16,320 17,664
5-layer NTT < 2464; 6944 > 31,584 26,496

2. Declaring an array with const keyword will suggest the linker to
put it in flash memory.

3. Declaring the array without const keyword.

ZHANG ETAL.: TIME-MEMORY TRADE-OFFS FOR SABER+ ON MEMORY-CONSTRAINED RISC-V PLATFORM 3001

 apply.

vector ss, we present three different strategies for computing
the matrix-vector multiplication in Saber+. These three strat-
egies present different time-memory trade-offs, and they can
perfectly meet the individual memory requirements of
LightSaber+, Saber+, and FireSaber+.

4.1 Matrix-Vector Multiplication and On-the-Fly
Generation

The matrix-vector multiplication appears twice in Saber,
AT � sAT � s in Algorithm 1 and A � s0A � s0 in Algorithm 2. Taking l ¼ 3
as an example, as shown in Fig. 1, AT � sAT � s and A � s0A � s0 have dif-
ferent computingmethods. In Saber’s reference implementa-
tion, the matrix AA is generated in row-major order, and the
matrix ATAT is generated in column-major order. As shown in
Fig. 1a, when computingA � s0A � s0, the core operation is the inner
product of the i-th row of the matrix AA and vector s0s0, and the
result will be stored in the i-th slot of the vector b0b0. As shown
in Fig. 1b, when computingAT � sAT � s, all polynomials in the i-th
column ofmatrixATAT aremultiplied by the i-th polynomial of
vector ss, and l generated polynomials are respectively accu-
mulated into the l slots of vector bb.

The basic idea of on-the-fly generation is that we gener-
ate a polynomial only when used and then reuse its mem-
ory space after finishing its polynomial multiplication. For
example, the computing of A � s0A � s0 contains l2 polynomial
multiplications, where each aij is used only once, so the on-
the-fly strategy can be used when generating matrix AA.
With the on-the-fly GenA technique, the memory footprint
of matrix AA is reduced from l2 � 256 � 2B to 512B. Its side
effect is that we need to keep the internal state of SHAKE-
128 in memory and deal with leftover bytes.

On-the-fly strategy for A � s0 ¼ b0A � s0 ¼ b0. When computing
A � s0 ¼ b0A � s0 ¼ b0, we can directly convert the result of the inner
product of a row of matrix AA and vector s0s0 into the cipher-
text, so the memory to store vector b0b0 can be reduced down
to one polynomial. But we need to store the entire vector s0s0,
because it will be reused l times. In this manner, when com-
puting A � s0A � s0, we need to compute NTT 2l2 times. If we store
32-bit ŝ0̂s0 (the NTT-domain representative of the vector s0s0),
then we only need to compute NTT l2 þ l times, but the
memory usage of ŝ0̂s0 is as high as l � 256 � 4B. The ideal way is
that the matrix AA is generated in column-major order, then
we can merely store one NTT-domain polynomial ŝ0iŝ

0
i instead

of the whole vector ŝ0̂s0. The out-of-order GenA below can
meet such requirements and achieves an excellent time-
memory trade-off.

On-the-fly strategy for AT � s ¼ bAT � s ¼ b. When computing
AT � s ¼ bAT � s ¼ b, the on-the-fly GenS technique allows us store
merely a polynomial sisi instead of the vector ss, but we have
to store the entire vector bb. In our implementation, we store
the 32-bit polynomial ŝîsi (the NTT-domain representative of
sisi) instead of the original sisi. In this way, NTT is calculated
only l2 þ l times instead of 2l2.

4.2 On-the-Fly GenS

Since the secret vector consists of 256� l coefficients, and one
needs m bits pseudo-random data to generate one coefficient
of the secret vector using the centered binomial distribution
bmðRl�1

q Þ where m ¼ 10; 8; 6 for l ¼ 2; 3; 4, therefore, generat-
ing a secret vector ss requires 640B, 768B, and 768B pseudo-
random data for LightSaber+, Saber+, and FireSaber+. We
can get 168B pseudo-random data by calling the keccak_s-
queezeblocks() function once. So we need to call it 4, 5, and 5
times for generating a secret vector ss, and there will be 32B,
72B, and 72B left for LightSaber+, Saber+, and FireSaber+.
For LightSaber+, we call keccak_squeezeblocks() once and
use 168B outputs to generate 128 coefficients, and the 8B left-
overs are directly discarded. Discarding the 8B pseudo-ran-
dom data will not affect the security of Saber+ and can
simplify the generation of ss. Overall, we call the keccak_s-
queezeblocks() 4 times to generate the secret vector ss for
LightSaber+. As shown in Fig. 2, we use 88B byte-bank to
keep the leftover bytes for Saber+. The first 168B pseudo-ran-
dom data is packed into 168 coefficients, and the second
168B is divided into two parts. The first 88B is packed into 88
coefficients and forms a complete polynomial with the 168
coefficients above, while the 80B leftovers will be kept in the
byte-bank andused in Step 2. In Step 2, after using the second
168B to generate eight coefficients, there are still 160B left-
overs. We discard 72B of them directly, and 72B is the maxi-
mum amount we can discard without increasing the number
of keccak_squeezeblocks() calls. The remaining 88B will be
used in Step 3 to generate the next polynomial. The genera-
tion strategy of FireSaber+ is similar to Saber+, except that
the length of the byte-bank is 72B.

4.3 On-the-Fly GenA

The on-the-fly generation strategy of matrixAA proposed in [13,
Sec 2.2.1] requires a book-keeping of leftover bytes. In our
implementation, we simplify this process by directly discard-
ing some leftovers without increasing the number of calls to
Keccak. Generating a polynomial coefficient requires 13-bit
pseudo-random data. So, the generation of the matrix AA
requires 1,664B, 3,744B, and 6,656B pseudo-random data, and
we need to call the keccak_squeezeblocks() 10, 23, and 40 times
for LightSaber+, Saber+, and FireSaber+.Weobserve that every

Fig. 1. Matrix-vector multiplication.

Fig. 2. On-the-fly GenS for Saber+ (l ¼ 3; m ¼ 8).

3002 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 11, NOVEMBER 2022

 apply.

two polynomials require 5� 168B pseudo-random data, i.e.,
each polynomial needs 2:5� 168B pseudo-random data on
average. Based on this observation, we propose an improved
on-the-fly GenA strategy. We first pack two 168B data into 206
coefficients. After that, we use 82B of the third 168B to generate
the 50 coefficients needed to form the first polynomial, and
there are 86B leftovers. Then, we only keep 82B leftovers in the
byte-bank for the generation of the next polynomial. In Step 2,
82B leftovers are firstly packed into 50 coefficients. Then, we
only need 2� 168B pseudo-random data to generate the
remaining 206 coefficients of the second polynomial, and there
will be no leftovers. In sum, we use 5� 168B pseudo-random
data to generate two polynomials. We iterate this process two
and eight times to generate the matrix AA for LightSaber+ and
FireSaber+. For Saber+, four iterations are required to generate
eight polynomials and a separate Step 1 to generate the last
polynomial. Compared with the method in [13, Sec 2.2.1], our
method greatly simplifies the book-keeping of leftovers with-
out increasing the number of Keccak calls.

4.4 Out-of-Order GenA

Each entry aij in the public matrix AA can be generated with-
out order restriction in Kyber. We call their method ‘out-of-
order GenA’. For the generation of aij, the keccak_absorb()
function takes seed, i, and j as input to reinitialize the inter-
nal state of Keccak, and then the outputs of keccak_squeeze-
blocks() are packed into aij. Hence, if we want to generate l2

polynomials, we need to call keccak_absorb() l2 times. In
Saber’s reference implementation, keccak_absorb() is called
only once, and it only takes the seed as input. In this way,
the matrix AA can only be generated in row-major order, and
the matrix ATAT can only be generated in column-major order.
We call this method ‘in-order GenA’.

In summary, the advantage of out-of-order GenA is that
aij can be generated without order restriction. The disad-
vantage is that keccak_absorb() is called l2 times, and the
number of calls to keccak_squeezeblocks() will be increased
because after generating each aij, the leftovers are directly
discarded. In-order GenA has a better performance than the
out-of-order GenA, but the generation order is limited.

In our implementation, out-of-order GenA is also imple-
mented with on-the-fly strategy. When we use out-of-order
GenA l2 times to generate the matrix AA, compared with the
in-order GenA, the number of calls to keccak_absorb()
increases by 3, 8, and 15 times, and the number of calls to
keccak_squeezeblocks() increases by 2, 4, and 8 times for
LightSaber+, Saber+, and FireSaber+, although the perfor-
mance of out-of-order GenA is not as good as in-order
GenA, its combination with the on-the-fly GenS can achieve
excellent time-memory trade-offs. Based on this observa-
tion, we propose three strategies for computing the matrix-
vector multiplication in Saber+.

4.5 Three Strategies for Computing Matrix-Vector
Multiplication

When computing AT � sAT � s, on-the-fly GenA and on-the-fly
GenS techniques can be used at the same time, and we only
need to compute NTT l2 þ l times. However, when comput-
ing A � s0A � s0, if we use on-the-fly GenS to reduce the memory
footprint of the secret vector s0s0, then we need to compute

NTT 2l2 times and each entry of the vector s0s0 will be repeat-
edly generated l times. Based on the above analysis and pro-
posed techniques, we propose three strategies to achieve
different time-memory trade-offs. In strategy 1, we store the
original vector s0s0, so we need to compute NTT 2l2 times. In
strategy 2, we store the NTT-domain secret vector ŝ0̂s0, and
we need to compute NTT l2 þ l times. In strategy 3, we use
the out-of-order GenA technique to generate the matrix AA
in column-major order. Furthermore, with the support of
on-the-fly GenS, we can merely store one NTT-domain
polynomial ŝîsi, so we only need to compute NTT l2 þ l times.
In the above three strategies, base multiplication and INTT
are computed l2 times.

In short, strategy 1 has the smallest memory footprint but
the worst performance, while strategy 2 has the best perfor-
mance but the largest memory footprint. Strategy 3 achieves
an excellent time-memory trade-off, and its performance
and memory footprint are between the other two. In order
to enable the three variants of Saber+ to be deployed on
memory-constrained RISC-V-based devices, we apply strat-
egy 1, strategy 2, and strategy 3 to FireSaber+, LightSaber+,
and Saber+, respectively. LightSaber+’s memory consump-
tion is inherently small, so strategy 2 with the largest mem-
ory footprint is suitable for LightSaber+. We apply strategy
1 with the smallest memory footprint to FireSaber+ because
of its inherently large memory footprint. Saber+’s memory
optimization requirements are between LightSaber+ and
FireSaber+, so strategy 3 with a better time-memory trade-
off is suitable. We have to note that our implementation is
highly modular. The users can apply the proposed three
strategies to different variants of Saber+ to get the desired
time-memory trade-off.

In addition, after computing A � s0A � s0 in Algorithm 2, s0s0 is
also used to compute the inner product bT � s0bT � s0. In strategy 2,
because we store the NTT-domain vector ŝ0̂s0, there is no
need to compute NTTðs0s0Þ again. Similarly, in strategy 3, we
keep the NTT-domain polynomial ŝ0iŝ

0
i until the inner product

is completed. But the purpose of strategy 1 is to minimize
the memory consumption, so we have to compute NTTðs0s0Þ
again in strategy 1.

In Section 3.3, we compare the efficiency of the complete-
NTT and incomplete-NTTs from an arithmetic perspective.
When computing the full polynomial multiplication
(c=INTT(NTT(a)	NTT(b))), the ratio of NTT/INTT to base
multiplication is expressed asNTT:Base=3:1. This ratio is dif-
ferent for matrix-vector multiplication, so we need to re-dis-
cuss the choice of incomplete-NTT. We implement all of the
complete-NTT, 7-layer NTT, 6-layer NTT, and 5-layer NTT
with hand-written assembly. Our experimental results show
that the 6-layerNTT is the fastest for all variants of Saber+.

4.6 Saber+ Versus Saber

Note that Saber’s specification doesn’t explicitly specify the
generation strategy of the public matrix AA and the secret
vector ss, which means that Saber is open to different imple-
mentation strategies. Therefore, we introduce two tweaked
GenA and a tweaked GenS strategies for Saber+ to obtain
more time-memory trade-offs, and these tweaks on GenA
and GenS are the main characteristics that distinguish Saber
+ from Saber. Due to different generation order of AA and
tweaked leftover handling strategy for AA and ss, our GenA

ZHANG ETAL.: TIME-MEMORY TRADE-OFFS FOR SABER+ ON MEMORY-CONSTRAINED RISC-V PLATFORM 3003

 apply.

and GenS strategies on Saber+, i.e., on-the-fly GenA, out-of-
order GenA and on-the-fly GenS, are not compatible with
the known-answer-tests (KAT) vectors of the original Saber
submission. However, our tweaks do not affect the nature
of the mathematical distribution, and hence they do not
affect the security of Saber+. Besides, we would like to
emphasize the benefits our tweaks on GenA together with
our on-the-fly GenS strategy bring to Saber+. First of all, our
on-the-fly GenA used in strategies 1 and 2 has a simpler
mechanism to handle leftover bytes and doesn’t increase
the number of Keccak calls. Therefore, it has better perfor-
mance in Saber+ than the Saber presented in [13, Sec 2.2.1].
Besides, the advantage of on-the-fly GenS is that it allows us
to store merely one polynomial in Saber+ instead of the
entire secret vector. Finally, although the out-of-order GenA
used in strategy 3 causes an increase of pseudo-random
bytes, its combination with on-the-fly GenS achieves an
excellent time-memory trade-off for Saber+.

4.7 Others

Since the coefficients of the secret polynomials lie in a small
range ½�m=2;m=2Þ, where the parameter m=10, 8, and 6 for
LightSaber+, Saber+, and FireSaber+, we apply the 4-bit
encoding technique proposed in [14, Sec 4.1] to the coeffi-
cients of secret polynomials.

Unlike the in-place NTT implementation in Kyber and
NewHope, when computing c=INTT(NTT(a)	NTT(b)) in
Saber+, apart from storing the original polynomial a and b,
the corresponding 32-bit NTT-domain representations, â and
b̂, also need to be stored.When computingmatrix-vector mul-
tiplication, the polynomial a is used only once, so after getting
â, thememory space of a can be reused to store b̂. Thememory
reuse here can reduce the memory footprint of 0.5KB when
computing polynomialmultiplication. In order to avoid intro-
ducing an additional memory footprint, our base multiplica-
tion is implemented in place. Similar to [14, Sec 4.2], we also
implement in-place verification of the decryption.

5 RESULTS AND COMPARISON

In order to comprehensively compare our implementation
with others, we give detailed results and throughout com-
parison on three platforms: the selected RISC-V platform
(SiFive Freedom E310 board), the simulated PQRISCV plat-
form4 and Cortex-M4. The first platform is a real memory-
constrained platform with only 16KB of RAM, while the
PQRISCV platform is a simulated RISC-V platform with
128KB of RAM.

5.1 Experimental Setup

SiFive Freedom E310. This board contains an E31 RISC-V core
with RV32IMAC instruction set, but it is not equippedwith a
random number generator. As far as we know, there are cur-
rently no such RISC-V devices with merely 16KB memory
that support a hardware random number generator. There-
fore, similar to Saber’s reference implementation, we use the
Countermode of AES (AES_CTR) to generate seed bytes.

We use SiFive GCC 8.3.0 toolchain to compile our
source code with the -Os flag. The -O3 flag is the most

commonly used option for better performance, but the
-Os option in our implementation has better performance
than the -O3 flag. The reason is that the E31 core supports
an Instruction Tightly Integrated Memory (ITIM) with a
maximum size of 8 KB. ITIM provides high-performance
and predictable instruction delivery. Fetching an instruc-
tion from ITIM is as fast as an instruction-cache hit [27,
Sec 3.1.1]. The executable program compiled with the -O3
flag cannot be totally placed in ITIM, part of it has to be
placed in ROM, and fetching instructions from ROM has
a longer delay. Therefore, a smaller executable program
compiled with the -Os flag is more suitable for the
selected RISC-V core.

PQRISCV. The PQRISCV platform targets the VexRiscv5

implementation of the RISC-V ISA. This platform has
enough memory resources, so we can run the generic C
implementation in [12], [13], [14] on this platform to get a
thorough comparison. We use SiFive GCC 8.3.0 toolchain to
compile our source code with the -O3 flag. This platform
does not provide a hardware random number generator, so
we also use AES_CTR to generate seed bytes.

Cortex-M4. Our implementation is compiled and run in
the same conditions as in pqm4 [28]. [11] is the known fast-
est implementation of Saber using NTT on the Cortex-M4
platform. In order to explore the performance penalty of
our memory optimization, we ported their Cortex-M4
assembly implementation of NTT into our work.

5.2 Comparison of Matrix and Secret Generation
Strategies

In order to explore the performance loss of the on-the-fly
generation strategies, we report their cycle counts in Table 2.
The GenA and GenS are taken from Saber’s reference imple-
mentation [12]. Taking l ¼ 3 as an example, we call the on-
the-fly GenA, out-of-order GenA nine times, and on-the-fly
GenS three times. The results show that the performance
loss of on-the-fly GenA and on-the-fly GenS is negligible.
Although the performance penalty of out-of-order GenA
is more significant than GenA or on-the-fly GenA, the
increased cycles only account for about 5% of the KenGen
stage. Besides, our improved on-the-fly GenA is 27% faster
than [13, Sec 2.2.1] thanks to our simpler mechanism of han-
dling leftovers. The generation of the public matrix and
secret vector does not touch the memory peak, so there is no
need to report their stack usage.

TABLE 2
Performance Comparison for Different Generation
Strategies of Public Matrix AA and Secret Vector ss.

Method Cycles

GenA ([12]) 923 k cycles
on-the-fly GenA (This work) 944 k cycles
on-the-fly GenA ([13]) 1 296 k cycles
out-of-order GenA (This work) 1 140 k cycles
GenS ([12]) 209 k cycles
on-the-fly GenS (This work) 214 k cycles

4. https://github.com/mupq/pqriscv 5. https://github.com/SpinalHDL/VexRiscv

3004 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 11, NOVEMBER 2022

 apply.

https://github.com/mupq/pqriscv
https://github.com/SpinalHDL/VexRiscv

5.3 Evaluation and Comparison of Saber+ KEM

Tables 3 and 4 illustrate the experimental results of our C
and assembly Saber+ KEM implementation in terms of exe-
cution time and stack usage on three platforms. In short,
our memory optimization is mainly due to our tweaked
GenA and GenS, which are the main difference between
Saber and Saber+. Besides, combining the tweaked GenA
and GenS with NTT instead of Toom-Cook to implement
polynomial multiplication also reduces the memory foot-
print. Our performance optimization is mainly derived
from NTT and its platform-specific optimizations. Note that
all of our memory optimization techniques are imple-
mented in C, and only the layer merging in NTT is imple-
mented in assembly. As shown in Table 3, for l ¼ 2, the
assembly-KeyGen and assembly-Encaps on SiFive E310 are

slightly slower than the C implementation because the loops
and functions in the assembly-NTT are expanded, resulting
in a larger executable program. A smaller executable pro-
gram can achieve better performance, which can be well
corroborated by the fact that the software compiled with the
-Os flag outperforms the -O3 flag on SiFive E310. Besides,
when l ¼ 3 and l ¼ 4, the assembly-KeyGen on SiFive E310
is also slower than the C implementation. After removing
AES_CTR, we find that assembly-KeyGen outperforms the
C-KeyGen. We infer that due to the larger code size of the
assembly-NTT, the linker puts more AES_CTR-related codes
into ROM. Due to the complicated AES implementation and
slower instructions fetching from ROM, a slower assembly-
KeyGen and assembly-Encaps are reasonable. Compared
with the C implementation, our assembly implementation

TABLE 3
Comparison of Execution Time (in k Cycles) on Three Platforms

Platform Implementation
KeyGen Encaps Decaps

l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 2 l ¼ 3 l ¼ 4

SiFive Freedom E310

[13] (M0-mem) - 6 546 - - 6 614 - - 7 133 -
Our Saber+(C) 2 219 3 647 5 056 2 202 3 881 6 076 2 030 3 755 6 019

Our Saber+ (Assembly) 2 560 3 809 5 063 2 205 3 594 5 360 1 773 3 193 4 928
Speed-up (Assembly Versus Old) — +42% — — +46% — — +55% —

PQRISCV

[12](C) 6 308 10 699 16 405 6 769 11 986 18 430 6 677 12 196 19 036
[13] (M0-mem) - 12 085 - - 13 837 - - 14 521 -

[14](C) 5 293 8 487 11 741 5 233 8 627 12 589 4 651 8 039 12 087
Our Saber+(C) 5 074 8 242 11 233 4 847 8 498 12 915 4 172 7 832 12 353

Our Saber+ (Assembly) 4 494 7 000 9 083 4 020 6 885 9 587 3 012 5 720 8 360

Cortex-M4

[12](C) 1 041 2 201 3 778 1 520 2 906 4 692 1 840 3 386 5 338
[13] (M4-mem) - 1 165 - - 1 530 - - 1 635 -
[14] (M4-mem) 607 1 233 2 052 857 1 620 2 546 973 1 765 2 749

[11] 360 658 1 010 513 864 1 257 501 838 1 234
Our Saber+(C) 635 1 331 2 072 888 1 693 2 913 1 018 1 887 3 184

Our Saber+ (Assembly) 409 849 1 238 566 1 067 1 607 565 1 064 1 617

Only Saber’s (l ¼ 3) implementation is available in [13].

TABLE 4
Comparison of Stack Usage (in Bytes) on Three Platforms

Platform Implementation
KeyGen Encaps Decaps

l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 2 l ¼ 3 l ¼ 4

SiFive Freedom E310

[13] (M0-mem) - 4 984 - - 4 696 - - 5 800 -
Our Saber+(C) 3 812 4 324 4 884 4 404 4 932 4 916 4 436 4 948 4 948

Our Saber+ (Assembly) 3 804 4 316 4 876 4 396 4 924 4 908 4 428 4 940 4 940
Reduction (Assembly Versus Old) — +13% — — -5% — — +15% —

PQRISCV

[12](C) 9 392 13 024 19 968 11 520 15 648 23 104 12 272 16 752 24 592
[13] (M0-mem) - 4 980 - - 4 068 - - 5 172 -

[14](C) 21 364 28 084 35 844 23 604 30 868 39 204 24 356 31 972 40 692
Our Saber+(C) 3 796 4 416 4 852 4 372 5 008 4 900 4 420 5 024 4 932

Our Saber+ (Assembly) 3 788 4 416 4 844 4 364 5 008 4 892 4 412 5 024 4 924

Cortex-M4

[12](C) 9 392 12 992 19 560 11 496 15 616 22 696 12 240 16 712 24 176
[13] (M4-mem) - 6 931 - - 7 019 - - 8 115 -
[14] (M4-mem) 3 548 4 400 5 216 3 248 3 412 3 668 3 156 3 448 3 736

[11] 14 616 23 288 37 128 16 248 32 616 40 488 16 992 33 712 41 968
Our Saber+(C) 3 816 4 328 4 848 4 392 4 896 4 904 4 408 4 904 4 920

Our Saber+ (Assembly) 3 800 4 312 4 832 4 376 4 880 4 888 4 392 4 888 4 904

Only Saber’s (l ¼ 3) implementation is available in [13].

ZHANG ETAL.: TIME-MEMORY TRADE-OFFS FOR SABER+ ON MEMORY-CONSTRAINED RISC-V PLATFORM 3005

 apply.

shows impressive speed-up on the PQRISCV platform with
relatively sufficient resources.

Since our selected RISC-Vplatform hasmerely 16KBRAM,
Saber’s reference implementation cannot run on SiFive E310.
To highlight our optimization more clearly, we run Saber’s C
reference implementation [12] on the simulated PQRISCV
platform. The results in Tables 3 and 4 on PQRISCV show that
our C and assembly implementation is faster than the refer-
ence implementation with one-third stack usage. For l ¼ 3,
our assembly implementation shows 35%; 43%; and 53%
speed-ups for KeyGen, Encaps, and Decaps, respectively,
which clearly shows the advantage of our time-memory
trade-offs. Our Saber+ implementation on Cortex-M4 also
shows 40%; 42%; and 44% speed-ups compared with the ref-
erence implementationwith roughly one third stack usage.

Although many related works tried to optimize Saber in
terms of time and memory, only a few works focused on
extremely memory-constrained scenarios (i.e., 8KB
32KB
RAM available). Besides, previous memory optimizations
only focused on optimizing Toom-Cook and Karatsuba [13],
[14]. The NTT’s adaptation on Saber was only conducted on
Cortex-M4 and Intel CPU [11]. There are still no memory
optimizations conducted over the NTT’s adaptation on
Saber. We believe our implementation can fill this gap and
provide efficient time-memory trade-offs to resolve the
availability of Saber in memory-constrained scenarios.

[13] from TCHES 2018 is one of the few works that
explore the availability of Saber on ARM Cortex-M0 with
limited memory. We deploy their generic C implementation
on SiFive E310. However, they use the hardware-specific
random number generator on Cortex-M0. To be fair, we
modified their implementation to use AES_CTR as the seed
bytes generator and benchmarked their implementation on
the selected RISC-V platform. They only provide the mem-
ory-optimized implementation of Saber without LightSaber
and FireSaber. As shown in Tables 3 and 4, our stack usage
is slightly larger than theirs in the Encaps stage, but our
implementation is 42%, 46%, 55%, and 48% faster than
theirs for KenGen, Encaps, Decaps, and the entire scheme
respectively. The experimental results on PQRISCV and
Cortex-M4 can also draw similar conclusions.

[14] provides time-memory trade-offs for Saber on Cor-
tex-M4, and they reported that Saber’s KEM scheme could
execute with less than 3.5KB stack usage thanks to their
memory optimization. They provide a generic C version
and a memory-efficient version (M4-mem), and the latter
version optimizes the 4-level memory-efficient Karatsuba
algorithm on Cortex-M4 using assembly language. In order
to compare with their implementation on the RISC-V plat-
form, we tried to deploy their generic C code on our
selected RISC-V platform and PQRISCV platform. How-
ever, the stack usage of their C implementation is too large
to run on SiFive E310, and their C implementation accounts
for nearly 21KB-40KB of stack on PQRISCV. The perfor-
mance results on PQRISCV show that our assembly imple-
mentation outperforms than theirs by 18%; 20%; and 29%
for KenGen, Encaps, and Decaps, respectively, while con-
suming nearly one-seventh stack. For our generic C imple-
mentation, our encapsulation and decapsulation are 3%
slower than the work in [14] when l ¼ 4, but our stack usage
is only 12%-14% of theirs. Compared with their M4-mem

implementation on Cortex-M4, our implementation is 1.48-
1.72 times faster than theirs. For stack usage, our KeyGen is
better than theirs only when l ¼ 3 or l ¼ 4, and in other
cases, our stack usage is 252-1468 bytes more than theirs. In
summary, we believe it is worth trading these stack con-
sumption for such a significant performance gain.

The implementation in [11, Sec 3.1] is the first work that
utilizes NTT to accelerate Saber. Their results show that
Saber’s NTT adaptation can achieve a great performance
gain. However, they did not conduct any memory optimiza-
tion, which makes their implementation impractical in
memory-constrained scenarios. According to Table 4, their
implementation requires 14KB-41KB of stack. After integrat-
ing our memory optimizations with their NTT assembly
implementation on Cortex-M4, we can save 73%-88% stack
with merely 10%-31% performance loss. This firmly con-
firms the effectiveness of our memory optimizations.

6 CONCLUSION

In this paper, we presented the first known tailored RISC-V
implementation of a modified Saber (Saber+). Our imple-
mentation aimed at memory optimization, and we explored
various time-memory trade-offs on a memory-constrained
RISC-V platform. Our time-memory trade-offs can reduce
the stack consumption by 73%-88% with merely 10%-31%
performance loss comparedwith the fastest SaberNTT adap-
tation implementation. Compared with previous memory-
optimized implementation using 4-level memory-efficient
Karatsuba, the stack consumption is at the same level, but
our speed is much faster than them. Ourwork shows that the
combination of NTT and various memory optimization tech-
niques proposed in this paper can effectively reduce Saber
+’s stack consumption, making it possible to deploy all var-
iants of Saber+ onmemory-constrained devices.

REFERENCES

[1] RISC-V, “RISC-V international,” 2019. [Online]. Available: https://
riscv.org/

[2] T. Fritzmann, G. Sigl, and J. Sep�ulveda, “RISQ-V: Tightly coupled
RISC-V accelerators for post-quantum cryptography,” IACR Trans.
Cryptogr. Hardware Embedded Syst., vol. 2020, pp. 239–280, 2020.

[3] G. Xin et al., “VPQC: A domain-specific vector processor for post-
quantum cryptography based on RISC-V architecture,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 67, no. 8, pp. 2672–2684, Aug. 2020.

[4] J. Yick, B. Mukherjee, andD. Ghosal, “Wireless sensor network
survey,” Comput. Netw., vol. 52, no. 12, pp. 2292–2330, 2008.

[5] S. K. Sharma, B. Bhushan, R. Kumar, A. Khamparia, and N. C.
Debnath, Integration of WSNs Into Internet of Things: A Security Per-
spective. Boca Raton, FL, USA: CRC Press, 2021.

[6] J. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber:
Module-LWR based key exchange, CPA-secure encryption and
CCA-secure KEM,” in Progress in Cryptology - AFRICACRYPT
2018. Berlin, Germany: Springer, 2018, pp. 282–305.

[7] A. LangloisandD. Stehl�e, “Worst-case to average-case reductions for
module lattices,” Des. Codes Cryptogr., vol. 75, no. 3, pp. 565–599,
2015.

[8] J. W. Bos, et al., “CRYSTALS - Kyber: A CCA-secure module-
lattice-based KEM,” in Proc. IEEE Eur. Symp. Secur. Privacy, 2018,
pp. 353–367.

[9] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Advances in Cryptology -
EUROCRYPT 2010, H. Gilbert, Ed., Berlin, Germany: Springer,
2010, pp. 1–23.

[10] E. Alkim, L. Ducas, T. P€oppelmann, and P. Schwabe, “Post-quan-
tum key exchange - A New Hope,” in Proc. 25th USENIX Conf.
Secur. Symp., 2016, pp. 327–343.

3006 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 11, NOVEMBER 2022

 apply.

https://riscv.org/
https://riscv.org/

[11] C. M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C. Shih,
andB. Yang, “NTT multiplication for NTT-unfriendly rings new
speed records for Saber and NTRU on Cortex-M4 and AVX2,”
IACR Trans. Cryptogr. Hardware Embedded Syst., vol. 2021, no. 2,
pp. 159–188, 2021.

[12] A. Basso et al., “SABER: Mod-LWR based KEM (Round 3 Sub-
mission),” 2020. [Online]. Available: https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-3-submissions

[13] A. Karmakar, J. M. B. Mera, S. S. Roy, andI. Verbauwhede, “Saber
on ARM CCA-secure module lattice-based key encapsulation on
ARM,” IACR Trans. Cryptogr. Hardware Embedded Syst., vol. 2018,
no. 3, pp. 243–266, 2018.

[14] J. M. B. Mera, A. Karmakar, andI. Verbauwhede, “Time-memory
trade-off in Toom-Cook multiplication: An application to module-
lattice based cryptography,” IACR Trans. Cryptogr. Hardware
Embedded Syst., vol. 2020, no. 2, pp. 222–244, 2020.

[15] D. O. C. Greconici, “Kyber on RISC-V,” M.S. thesis, Dept. Inst.
Comput. Inf. Sci. Digit. Secur., Radboud Univ. Nijmegen, Nijme-
gen, The Netherlands, 2020.

[16] D. Hofheinz, K. H€ovelmanns, and E. Kiltz, “A modular analysis of
the Fujisaki-Okamoto transformation,” in Proc. Theory Cryptogr.
Conf., 2017, pp. 341–371.

[17] H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma, “Post-quantum
IND-CCA-secure KEM without additional hash,” IACR Cryptol.
ePrint Arch., vol. 2017, 2017, Art. no. 1096.

[18] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” in Proc. 37th Annu. ACM Symp. Theory Com-
put., 2005, pp. 84–93.

[19] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions
and lattices,” in Proc. Annu. Int. Conf. Theory Appl. Cryptogr. Techn.,
2012, pp. 719–737.

[20] M. J. Dworkin, “SHA-3 standard: Permutation-based hash and
extendable-output functions,” 2015. [Online]. Available: https://
doi.org/10.6028/NIST.FIPS.202

[21] C. Chen et al., “NTRU - Algorithm specifications and supporting
documentation (Round 3 Submission),” Tech. Rep. 2020. [Online].
Available: https://csrc.nist.gov/Projects/post-quantum-cryptography/
round-3-submissions

[22] X. Lu et al., “LAC: Practical Ring-LWE based public-key encryption
with byte-levelmodulus,” IACRCryptol. ePrint Arch., vol. 2018, 2018,
Art. no. 1009.

[23] V. LyubashevskyandG. Seiler, “NTTRU: Truly fast NTRU using
NTT,” IACR Trans. Cryptogr. Hardware Embedded Syst., vol. 2019,
no. 3, pp. 180–201, 2019.

[24] R. Avanzi et al., “CRYSTALS-Kyber - algorithm specifications and
supporting documentation (round 2 submission),” 2019. [Online].
Available: https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions

[25] G. Seiler, “Faster AVX2 optimized NTT multiplication for Ring-
LWE lattice cryptography,” IACR Cryptol. ePrint Arch., vol. 2018,
2018, Art. no. 39.

[26] E. Alkim, Y. A. Bilgin, M. Cenk, andF. G�erard, “Cortex-M4 optimi-
zations for {R, M} LWE schemes,” IACR Trans. Cryptogr. Hardware
Embedded Syst., vol. 2020, no. 3, pp. 336–357, 2020.

[27] SiFive, Sifive FE310-G002 Manual, 2021. [Online]. Available:
https://starfivetech.com/uploads/fe310-g002-manual-v1p0.pdf.

[28] M. J. Kannwischer, J. Rijneveld, P. Schwabe, andK. Stoffelen, PQM4:
Post-quantumcrypto library for theARMCortex-M4, 2018. [Online].
Available: https://github.com/mupq/pqm4

Jipeng Zhang received the bachelor’s degree
from the Nanjing University of Aeronautics and
Astronautics (NUAA), Nanjing, China, in 2020.
He is currently working toward the PhD degree
with NUAA, Nanjing, China.

Junhao Huang received the bachelor’s and mas-
ter’s degrees from the Nanjing University of Aero-
nautics and Astronautics, Nanjing, China, in 2018,
and 2021, respectively. He is currently working
toward the PhD degree with Beijing Normal Univer-
sity-Hong Kong Baptist University United Interna-
tional College, Zhuhai, China.

Zhe Liu (Senior Member, IEEE) received the BS
and MS degrees from Shandong University, Jinan,
China, in 2008 and 2011, respectively, and the PhD
degree from the University of Luxembourg, Esch-
sur-Alzette, Luxembourg, in 2015. He is currently a
professor with the College of Computer Science
and Technology, Nanjing University of Aeronautics
and Astronautics, China. His research interests
include security, privacy, and cryptography solutions
for the Internet of Things. He was a recipient of the
prestigious FNR awards-Outstanding PhD Thesis

Award in 2016, ACM CHINA SIGSAC Rising Star Award in 2017 as well as
DAMO Academy Young Fellow in 2019. He served as general co-chair of
CHES2020 andCHES2021.

Sujoy Sinha Roy received the PhD degree with
‘Summa cum laude with congratulations from the
examination committee’ from COSIC, KU Leuven,
Belgium, in 2017 . His doctoral thesis was awarded
the ’IBM Innovation Award 2018’ that recognizes
an outstanding doctoral thesis in informatics. He is
currently an assistant professor with IAIK, the Graz
University of Technology. He is a co-designer of
‘Saber’ which is a finalist in NIST’s Post-Quantum
Cryptography Standardization Project.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ETAL.: TIME-MEMORY TRADE-OFFS FOR SABER+ ON MEMORY-CONSTRAINED RISC-V PLATFORM 3007

 apply.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://starfivetech.com/uploads/fe310-g002-manual-v1p0.pdf
https://github.com/mupq/pqm4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

