Optimized Software Implementation of Keccak,

Kyber, and Dilithium on RV{32,64}IM{B}{V}

Jipeng Zhang', Yuxing Yan?, Junhao Huang®*, Cetin Kaya Kog'->6

"Nanjing University of Aeronautics and Astronautics
jp-zhang@outlook.com

2Shanghai Aerospace Electronic Technology Institute

yanyuxing7408@163.com
SBNU-HKBU United International College “Hong Kong Baptist University
huangjunhao@uic.edu.cn
SIgdir University 8University of California Santa Barbara
cetinkoc@ucsb.edu
Artifact: https://github.com/Ji-Peng/PQRV/tree/ches2025
IACR TCHES 2025, to appear

2024-10-23

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204 2024-10-23


https://github.com/Ji-Peng/PQRV/tree/ches2025

@ Motivations
e Background
e Optimized Keccak implementation

e Optimized NTT implementation

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204 2024-10-23



@ Limited Software Implementations on RISC-V.
@ Optimized implementations of PQC on ARM platforms have
received significant attention.
e However, there are comparatively fewer optimized implementations
on RISC-V.
@ Hardware Implementations Lack Efficient Baseline.
e Hardware implementations rely on the C reference implementation
as their evaluation baseline.

e Using fully optimized software implementations as a baseline would
be more reasonable.

@ Challenges of Optimizing PQC for Different RISC-V ISAs.

o Different RISC-V ISA combinations lead to significant variations in
optimization strategies.

e For example, the Keccak implementation on RV{32,64}I{B}{V}
presents eight distinct ISA combinations

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204 2024-10-23



Background: FIPS 202, 203, and 204

@ In 2015, FIPS 202 established the SHA-3 standard, which
includes four hash functions (SHA3-224,256,384,512) and two
extendable-output functions (SHAKE128,256).

o The core component of SHA-3 is the Keccak-f1600 algorithm.

@ In 2024, FIPS 203 and 204 introduced lattice-based post-quantum
cryptographic standards, ML-KEM and ML-DSA, based on Kyber
and Dilithium, respectively.

e The time-consuming operations in Kyber and Dilithium mainly
involve SHA-3 and NTT polynomial multiplication.

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204 2024-10-23



Background: Keccak-f1600

@ The Keccak-f1600 algorithm operates on a 1600-bit state,
consisting of 24 rounds, with each round comprising 5 steps (0, p,
T, X, and ¢).

Algorithm 1 A round of Keccak-f1600

Input: The 1600-bit state A; A constant RC

Output: A
1: 6 step:
2: Cla] = Alz,0] @ Az, 1] & Alz, 2] & Al2,3] @ Alz,4], Vaxin0...4
3: Dlx] = Clz — 1] ROT(Clz + 1],1), Vaxin0...4
4 Alz,y) = Alz,y] @ Dlz], V(a,y)in (0...4,0...4)
5: p and 7 steps:

5. Bly, 22 + 3y] = ROT(A[z, y], r[z,y]), V(2,y) in (0...4,0...4)

: X step:

o Alz,y] = Bla,y] & ((NOT Bz + 1,y]) AND Bz + 2,y]), VY(z,y) in (0...4,0...4)
: 1 step:

. A[0,0] = A[0,0] & RC
: return A

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204 2024-10-23



Common optimization techniques for Keccak

@ Bit interleaving: Changing the state encoding to convert 64-bit
rotations into 32-bit rotations.

@ Lane complementing: Inverting parts of the state to reduce the
number of inversion operations.

@ In-place implementation: Keeping the state storage location
unchanged after N rounds of computation.

@ Lazy rotations: Using the Barrel Shifter feature of ARMv8-A or
ARMv7-M to eliminate rotation instructions.

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204 2024-10-23



Common optimization techniques for NTT

@ Algorithmic or implementation level optimization of modular
multiplication algorithms.

o Montgomery, Barrett, and Plantard.
@ Layer merging strategy: reducing memory access.
@ Parallelized implementation.

e SIMD or Vector.

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204 2024-10-23



Target platform: CanMV-K230 with C908 core

Instruction Latency CPI
RV {32,64}1
arith/logic/compare 1 0.5
@ RISC-V {32,64)GCBV. 1h/1u/1d 3 L
] sh/sw/sd 1 1
@ Supports both 32-bit and RV{32,64}M
64-bit execution states. mulw on RVGIM 3 !
. mul{h} on RV64M 4 2
@ Supports Vector Extension 1.0 mul{h} on RV32M 3 1
with VLEN=128. RV{32,64}B
] rori/andn 1 0.5
@ Supports B Extension 1.0. RV{32,64}V
o Dual-i lar instruction vadd/vsub 4 1
.ua IS.SUG scalar instructions, vmul{h} with SEW<16 4 1
single-issue vector vmul{h} with SEW>16 5 1
instructions. logic/vmerge 1 2
vrgather 5 4
vle >3 2
vse 1 2.3

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204

2024-10-23



Optimized Keccak on RV64I| and RV64IB

The 64-bit rotation operation
@ RV64l:s111i t,a,n; srli b,a,64-n; xor b,b,t
@ RV64IB: rori
Lane complementing
@ RV64I: This reduces the number of NOT operations required in the
x step of a Keccak-f1600 round from 25 to 8.
@ RV64IB: andn
In-place implementation: Becker et al’s in-place method.

@ The goal is to slightly offset 1oc B[] from 1oc A[] for the
computation of pm and to move entries back to their original places
in x.
Dual issue optimizations: reducing RAW hazards.

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204 2024-10-23



Optimized Keccak on RV32l and RV32IB

Lane complementing: RV32Il v; RV32IB X.
In-place implementation: Becker et al’s in-place method.
Bit interleaving: RV32l v; RV32IB X.
Register allocation and optimizations for dual issue
@ RV32: 30 x 32 = 960 bits < 1600 bits
@ Our goal is pipeline friendliness. Using 20 registers to keep the
640-bit state resident in the registers

.macro xor5 dst,b,g,k,m,s,tmp 11w tmp0l, 0%8+0(a0) # A[0,0]1
) 1w \dst, \b(a0) /1w tmpOh, 0+%8+4(a0) # A[0,0]h
3 1w \tmp, \g(a0) | xor tmp1l, A[0,1]1, A[0,2]1
1 xor \dst, \dst, \tmp | xor tmplh, A[0,1]h, A[0,2]h
5 1w \tmp, \k(a0) i|1lw  tmp21, 15%8+0(a0) # A[0,3]1
6 xor \dst, \dst, \tmp 6 1w tmp2h, 15%8+4(a0) # A[0,3]h
7 1w \tmp, \m(a0) 7| xor tmpll, \tmpll, \tmpOl
8 xor \dst, \dst, \tmp s| xor tmplh, \tmplh, \tmpOh
9 1w \tmp, \s(a0) of 1w tmp0l, 20%8+0(a0) # A[0,4]1
10 xor \dst, \dst, \tmp ol 1w tmpOh, 20%8+4(a0) # A[0,4]h
11| .endm i{xor tmpll, \tmpll, \tmp2l

1
1

12| xor tmplh, \tmplh, \tmp2h
13| xor tmp1l, \tmpll, \tmpOl
14 xor tmplh, \tmplh, \tmpOh

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204 2024-10-23



Optimized Keccak on RISC-V Vector

@ The implementation on RVV is nearly identical to that on RV641.
@ VLEN=128 — 2-way implementation.

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204 2024-10-23



Hybrid Keccak implementations

@ The C908 has relatively weak capabilities for computing logical
vector instructions, with a corresponding CPI of 2.

@ vand; vand consumes 4 cycles.
@ vand; vand; andx4 also consumes 4 cycles.

@ The hybrid implementation on C908 RV64IBV shows no
performance improvement over the RV64IB scalar
implementation, as the scalar implementation is already
sufficiently fast.

@ Hybrid implementation on C908 RV32IBV: the hybrid 3-way
implementation consisting of an RVV implementation and a scalar
implementation performs best.

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204 2024-10-23



Keccak: Results and Comparisons

Implementation Method Cycles Instructions  CPI
~_ConRv32l refl. 15779 24487 0.64
lane compl. &
[Sto19] on bit interl. & - P .
RV321 {-round in-place & 8731 12740 069
. _______ _planebyplage
lane compl. &
Our RV321 l-round in-place & 7808 14890 0.52
dual-issue opt.
C on RV32IB ref. 12341 0.6

bit interl. &
Our RV32IB 1-round in-place & 6222
dual-issue opt.

C on RV641L

Our RV641L

lane compl. &
1-round in-place & 2591
dual-issue opt.

Our RV641B

C on RV64IB ref.

inline asm for
rori/andn

1-round in-place &
dual-issue opt.

@ RV32l, RV32IB, RV64l, and RV64IB: 12%, 98%, 90%, and 36%

faster than previous work, respectively.

Jipeng Zhang et al.

Optimized Implementation of FIPS 202




Keccak: Results and Comparisons

lane compl. &

Our RVVx2 1-round in-place & 9655 (4827) 5462 177
dual-issue opt.

Our RV32IVx3 11850 (3950) 20273 0.58
Our RV321Vx4 RV32I & RVVx2 20: i/ 1 (5093) 35190 0.58
Our RV32IVx5H 30544 (6108) 50285 0.61
Our RV32IBVx3 10527 (3509) 17012 0.62
Our RV32IBVx4  RV32IB & RVVx2 16670 (4167) 28472 0.59
Our RV32IBVxH 24299 (4859) 39991 0.61

@ RV32IVx3: 22% and 98% faster than RVV and RV32I,
respectively.

@ RV32IBVx3: 38% and 77% faster than RVV and RV32IB,
respectively.

Jipeng Zhang et al. Optimized Implementation of FIPS 202~.2 2024-10-23



Kyber and Dilithium NTT

@ Kyber: 16-bit NTT; Dilithium: 32-bit NTT.
@ Plantard multiplication requires [ x 2I-bit multiplier.

o Kyber NTT on RV{32,64}IM; Dilithium NTT on RV64IM.

Algorithm 5 Plantard multiplication by a

constant for Kyber on RV32IM [HZZ"24]

Input: 32-bit  signed integer a €
[-137¢,230q); « = 3; precomputed
2l-bit integer bg’ where b is a constant
and ¢ = ¢ 'mod 2% g2 =g x 251 =16

Output: r = ab(—2 2)mod® ¢,r €
(-4.9)

2 b’ + bg Lod® 22
: mul 7, a,bq

: srai r,r, #16

: addi r, 7,2

: mulh 7, 7, ¢2!

> precomputed
> 7 < [abq]a

> ([r] +29)
> [rq2t)?

AR SO R

6: return r

Algorithm 6 Montgomery multiplica-

tion for Dilithium on RV32IM

Input: Two signed integers a, b satisfy-
ing —%q < ab < %q. where ¢ €

(0,5) and B = 2%2; precomputed in-
teger bg’ where b is a constant and
be(0,q); ¢ =q¢ *modp

Output: 7= abf ' mod* ¢,r € (—q,q)

1: bg « bg! mod? f > precomputed

2: mul 7, a,bq’

3: mulh ¢,a,b

4: mulh r,7,q

5: sub r,t,r

6: return r

Optimized Implementation of FIPS 202~



Kyber and Dilithium NTT

Pipeline optimization:
@ A suboptimal case: mul r,a,bq’; srai r,r,#16; addi r,r,2%
mulh r,r, q2’
@ The mul consumes 3 cycles on RV32IM.
@ Six-way alternation yields optimal performance.

@ However, in NTT implementations, we can achieve at most
four-way alternation: mulx4; sraix4; addix4; mulhx4 ...

@ Kyber NTT: 13218 cycles — 5714 cycles

Jipeng Zhang et al. Optimized Implementation of FIPS 202~204 2024-10-23



NTT: Results and Comparisons

@ Kyber NTT on RV32IM:

1.7x ~ 2.3%

Tmpl. Method Cycles Inst. CPI

—_— Plant & 4+3 & 13218 6774 1.95
nzz’ 240 11427 7317 156
JonRVEM Coreas 2591/5900 _ 2572/3663_ 1.12/1.61
oo Plant & 143 & 0.83

oy dual-issue opt.& 0.81
RV32IM 0.69/0.75

single

Plant & 4+-3&
M4 CT+GS

Cortex:

Kyber - - - m o e e e e e e e o - - - o ,,,,,,,,,,{T,,
Our on 0-96
RVGAIM 0-95
o ervas 21 0.83/0.92

Our on Mont & 146 & .

. dual-issue opt& 1840 1.16
RVV

T+GS 2

[BHK'22] on  Barrett & 4+3& s R R
@ Kyber NTT on RVV: ATINEON  CT+GS e i i
2.2x ~ 3.6x compared Ouron  Moemtldese2l TR R

to RV32IM

RV32IM 2026
Our on Plant & 4+4&
RV64IM CT+GS

! < Mont & 3+3+2&
Cortex-M4 cT+CT
o T Mont&44A & T
dual-issue opt.&

Dilithium

Our on
RVV

[BHK'22) on  Barrett & 4+4&
AT2-NEON CT+GS

Optimized Implementation of FIPS 202



Kyber and Dilithium: Results and Comparisons

Table 4: Performance of Kyber768 and Dilithium3 on C908 RV{32,64}IM{B
the cycle counts (k = 1000) are determined as the median over 10000 iterations, except
that Dilithium Sign is obtained as the average over 10000 iterations.

HV}. Most of

Ympl Kyber768 Dilithium3

: KeyGen Encaps Decaps  KeyGen — Sign  Verify

[HZZ*24) RV32IM 1052k 1179k - -
[HAZ*24] Cortex-Md4 604k 732k 674k 2394k 2302k
Ref RV32IM! 1222k 1602k 1691k 4123k 1145k
1048k 1377k 1481k 3422k 3504k
196k G0k 578k 1934k 5069k 1889k
Utk 550k 5 1752k ATAGK 1720k
312k 119k 371k 1165k 3193k 1165k
Our RV32IMBV 281k 382k 346k 1087k 1091k
Ref RVGAIM?2 742k 986k 1185k 1841k 1958k
Ref RVGAIMB? 603k 803k 1011k 1328k 1474k
Our RV6AIM 278k 357k 3333k 930k
Our RV6AIMB 237k 316k 3085k 791k
Our RVGIMV 204k 248k 2406k 800k
Our RVGAIMBY 165k 207k 2139k 646k
[BHK*22] A72 99k 120k 1080k 447k

@ Kyber: RV32IM 2.0x ~ 2.1x; RV32IMB 2.4x ~ 2.8x
@ Dilithium: RV32IM 2.1x ~ 2.7x; RV32IMB 2.0x ~ 2.7 x

Optimized Implementation of FIPS 202



ENG25519: Faster TLS 1.3 handshake using

optimized X25519 and Ed25519

Jipeng Zhang', Junhao Huang?3, Lirui Zhao', Donglong Chen?,
Cetin Kaya Kog'4°

"Nanjing University of Aeronautics and Astronautics, Jiangsu, China
jp-zhang@outlook.com, lirui.zhao@outlook.com
2Guangdong Provincial Key Laboratory IRADS, BNU-HKBU United International College
huangjunhao®@uic.edu.cn, donglongchen@uic.edu.cn
3Hong Kong Baptist University
4Igdir University SUniversity of California Santa Barbara
cetinkoc@ucsb.edu
Artifact: https://github.com/Ji-Peng/eng25519_artifact
Usenix Security 2024. Distinguished Award

2024-10-23

Jipeng Zhang et al. ENG25519 2024-10-23 1/15


https://github.com/Ji-Peng/eng25519_artifact

0 Motivations
e Background
e Optimized X/Ed25519 implementation & ENG25519

e Conclusions

Jipeng Zhang et al. ENG25519 2024-10-23 2/15



@ How can AVX-512IFMA instructions accelerate ECC?

@ Optimizing ECC using ARM NEON and AVX2 instructions has been
thoroughly researched.
e However, using AVX-512IFMA instructions remains underexplored.
@ How can the optimized ECC implementation be integrated into
TLS applications?
o Few works consider integration; most focus solely on optimizing
cryptographic implementations.
@ How can the cold start issue of vector units be mitigated?
e The cold start issue can cause some primitives to be up to 3.8
times slower than normal.
@ To what extent can our optimized cryptographic implementation
improve TLS applications?
e It is more interesting to understand the improvements to TLS
applications rather than just focusing on cryptographic primitive
microbenchmarks.

Jipeng Zhang et al. ENG25519 2024-10-23 3/15



Background: AVX-512 & X25519 and Ed25519

AVX-512
@ 32 512-bit registers; Each 512-bit register can be divided into 32
16-bit, 16 32-bit, or 8 64-bit segments.
@ AVX-512IFMA supports 52-bit multipliers, whereas AVX2 and
AVX-512F only support 32-bit multipliers.
X25519 and Ed25519
@ X25519, designed by Daniel J. Bernstein, is a Diffie-Hellman key
exchange protocol based on Curve25519.

@ Ed25519, designed by Daniel J. Bernstein et al., is an
Edwards-curve digital signature algorithm.

@ In 2018, RFC 8446 included X25519 and Ed25519 in the
supported cipher suites for TLS 1.3.

Jipeng Zhang et al. ENG25519 2024-10-23 4/15



Background: TLS 1.3 handshake & DNS over TLS

TLS 1.3 handshake

Client

TCP SYN

Server

@ Client op; Server op.
0 X25519' xisw

KeyGen/KeyGen+X25519- e
Derive+Ed25519-

Sign+X25519-

TCP SYN-ACK

TLS 1.3 Client Hello

[+ key_share

Client X25519 public key
+ signature_algorithms
Ed25519

TLS 1.3 Server Hello

i - 'X25519-Derive with |
Derive+Ed25519
. own secret key
Verify. L

. X25519 Shared Seeret |
D N S Over TLS Ed25519-Verify on
received signature

key_share

Server X25519 public key

{EncryptedExtensions}

{Certificate}

{CertificateVerify}

Server certificate and certificate chain

Ed25519 signature over handshake

{Finished}

o TLS handshake%DNS ‘TLSI,}kcyschcdulc‘

4;leshcd) }—>

queries and responses

Encrypted Application Data

over the TLS
connection.

{771 £ x25519 operation

Jipeng Zhang et al. ENG25519

X25519-KeyGen

X25519

i X25519-Derive with
{ Client's public key and
own secret key

| X25519 Shared Secret
Ed25519-Sign of
handshake for
CertificateVerify

TLS 1.3 key schedule

Ed25519 operation  {}: Encrypted message  +: Noteworthy extension

2024-10-23

5/15



Optimized X25519 and Ed25519 implementation

Field arithmetic
@ Radix-2°!: A field element f = fy + 231, +2192f, 4 2153f; 4 22047,
@ 8 x 1-way: One subroutine performs 8 parallel independent field
operations.
@ We formally verified our field implementations using CryptoLine.

X25519-KeyGen Ed25519-Sign Ed25519-Verify
Scala}r mult‘iplication 8x 1 | | 1x8 | | 1x2 |
arithmetic layer
T T T
arithlll)lzitlilz layer | 8x1 | | 24 |
T T
Finite field | 8§ x1 |

arithmetic layer

Figure: An overview of our X/Ed25519 implementation.

Jipeng Zhang et al. ENG25519 2024-10-23 6/15



Optimized X25519 and Ed25519 implementation

Strategy: “finite field arithmetic” — “point arithmetic” — “scalar
multiplication”

@ X25519-KeyGen: 8 x 1 -8 x 1 — 8 x 1

e 12 times that of the OpenSSL implementation and 2.32 times that
of Cheng et al’s implementation.

@ X25519-Derive: We don’t provide a faster X25519-Derive
implementation than Hisil et al.
@ Ed25519-Sign: 8 x 1 -8 x 1 —1x8

e 3.79 times that of the OpenSSL implementation and 1.18 times that
of Faz-Hernéandez et al.s implementation.

@ Ed25519-Verify: 8 x 1 -2 x4 —1x2

e 3.33 times that of the OpenSSL implementation and 1.33 times that
of Faz-Hernandez et al.'s implementation.

Jipeng Zhang et al. ENG25519 2024-10-23 7/15



ENG25519: An OpenSSL ENGINE

@ ENG25519 is based on OpenSSL ENGINE APIs, libsuola, and
engntru.

@ Our optimized X/Ed25519 implementations can be transparently
integrated into OpenSSL and TLS applications through
ENG25519.

Table: Detailed configuration of ENG25519.

Subroutine Implementation
X25519-KeyGen Our8 x 1 —8x 1 — 8 x 1impl.
Ed25519-KeyGen batch-size = 16

4 x2—1x4impl. of
Hisil et al.

Ed25519-Sign Our8x1—8x1— 1 x 8impl.
Ed25519-Verify Our8x1—2x4—1x2impl.

Jipeng Zhang et al. ENG25519 2024-10-23 8/15

X25519-Derive




ENG25519: How to mitigate the cold-start issue?

Code start issue

@ The processor will set the upper parts of the AVX2/AVX-512
vector units to a low-power mode to save power if the units are not
in use for about 675 s, leading to a warm-up phase of
approximately 14 us (56,000 clock cycles at 4 GHz) when an
AVX2/AVX-512 instruction is executed in the low-power mode.

@ During the warm-up phase, the throughput of the related
instructions is 4.5 times slower than usual.

@ All X/Ed25519 primitives suffer from varying degrees of
performance degradation; especially the X25519-KeyGen takes
3.8 times longer in the DoT scenario than in the warm-start
scenario.

Jipeng Zhang et al. ENG25519 2024-10-23 9/15



ENG25519: How to mitigate the cold-start issue?

We designed a heuristic auxiliary thread that performs different actions
based on the application’s varying load conditions.
@ Low-load scenarios: It takes no action to avoid disrupting the
processor’s power-saving strategies.
@ Medium-load: It periodically executes a vector instruction.
@ High-load: The frequent cryptographic operations inherently
prevent entering low-power mode.

Table: Amortized CPU cycles (CC) to generate a keypair.

Batch Amortized CC Amortized CC
size  with auxiliary thread without auxiliary thread
1 10,315 28,450
4 9,107 19,388
8 9,003 14,108

—

6 8,980 11,406

Jipeng Zhang et al. ENG25519 2024-10-23 10/15



ENG25519: Benchmark of TLS handshake

Client: tls_timer «» Server: OpenSSL s_server

—— P256
091 -~ X25519
—— ENG25519

On average, the proposed osf 7 B
ENG25519 setting (1,707
#connections/second) enables
25% and 35% more handshakes
per second than X25519 (1,366)
and P256 (1,260), respectively.

Cumulative distribution: P(X < x)
)
w

I
i
I
i
i
t
i
i
i
|
i
i
i
|
i
i

S
o

: 1

|
H ‘ i
0](100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700
‘connections / second

Jipeng Zhang et al. ENG25519 2024-10-23 11/15



ENG25519: Benchmark of DoT query

Client: dot_timer <+ Server: unbound DoT server’
End-to-end experiments
@ Our ENG25519 outperforms
all other configurations. = I '
Peak throughput L0381 T b opesst
@ Our ENG25519 configuration
achieved a significant
improvement, achieving
290,315 #queries/min, which
represents a 41% and 24% _ il
increase over P256 (206’275) 0‘%25 850 875 900 925 QSOJ 975 1000 1025
and X25519 (234,875),
respectively.

Cumulative distribution: P(X < x)

i
i
i
i
i

i

i

i

i

i

i

i

i

i

i
i
i

"https://nlnetlabs.nl/projects/unbound/about/

ENG25519 2024-10-23 12/15

Jipeng Zhang et al.


https://nlnetlabs.nl/projects/unbound/about/

Conclusions

@ Faster X/Ed25519 implementation using AVX-512IFMA.

@ Integration of optimized X/Ed25519 implementations into TLS;
faster TLS 1.3 handshake; increased DNS over TLS throughput.

@ Under cold start conditions, some primitives may suffer a
performance degradation of up to 3.8 times. If the vector
implementation does not achieve significant improvements, a
reevaluation of the vector implementation versus the x64
implementation is necessary.

@ Open source artifact:
https://github.com/Ji-Peng/eng25519_artifact.

Jipeng Zhang et al. ENG25519 2024-10-23 13/15


https://github.com/Ji-Peng/eng25519_artifact

Publications

@ Jipeng Zhang, Yuxing Yan, Junhao Huang, Cetin Kaya Kog¢. Optimized Software
Implementation of Keccak, Kyber, and Dilithium on RV{32,64}IM{B}{V}. IACR
TCHES 2025. CCF-B.

@ Jipeng Zhang, Junhao Huang, Lirui Zhao, Donglong Chen, Cetin Kaya Kog.
ENG25519: Faster TLS 1.3 handshake using optimized X25519 and Ed25519.
Usenix Security 2024. Distinguished Award. CCF-A.

@ Jipeng Zhang, Junhao Huang, Xuan Yu, et al. Research on Efficient
Implementation of SM2 for Mobile Devices. Acta Electronica Sinica. CCF-A.

@ Jipeng Zhang, Junhao Huang, et al. Time-memory Trade-offs for Saber+ on
Memory-constrained RISC-V. IEEE Trans. on Computers. CCF-A.

@ Jipeng Zhang, et al. An Efficient and Scalable Sparse Polynomial Multiplication
Accelerator for LAC on FPGA. ICPADS2020. CCF-C.

@ Junhao Huang, Jipeng Zhang, et al. Improved Plantard arithmetic for
lattice-based cryptography. IACR TCHES 2022. CCF-B.

@ Junhao Huang, Alexandre Adomnici, Jipeng Zhang, et al. Revisiting Keccak
and Dilithium Implementations on ARMv7-M. IACR TCHES 2024. CCF-B.

Jipeng Zhang et al. ENG25519 2024-10-23 14/15



Thanks for listening

Jipeng Zhang et al. ENG25519 2024-10-23



	PQRV_slides
	Motivations
	Background
	Optimized Keccak implementation
	Optimized NTT implementation

	eng25519_slides
	Motivations
	Background
	Optimized X/Ed25519 implementation & ENG25519
	Conclusions


