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Lattice-based Cryptography

RSA and ECC: Discrete Logarithm and Integer Factorization
Problems

Hard problems can be solved by Shor’s algorithm
Lattice-based Cryptography: Hard for quantum computers

Ring-LWE Encryption schemes: proposed [EUROCRYPT’10]
Huge performance improvement: Newhope [USENIX’16]
LAC is a unique scheme (Round 2 candidates): its modulus is 251,
which can be packed into a single byte.

NIST Post-Quantum-Cryptography (PQC) Project
2016, Formal call for proposals
2017, Round1 algorithms announced (69 submissions)
2019, Round2 algorithms announced (26 algorithms)
......
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Implementation Platform

Zynq-7020 (including Artix-7 FPGA)
FPGA is composed of hardware resources such as logic unit, RAM,
multiplier, etc.
FPGAs are widely used to design accelerators for cryptographic
schemes.
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Motivation & Contribution

Motivation
The most compute-intensive routine in the LAC scheme is sparse
polynomial multiplication (SPM).
Hardware accelerator can greatly improve the performance of SPM.

Contributions: Efficient and Scalable SPM accelerator
Parallel design: Dual-For-Loop-Parallel (DFLP) technique.
A new modular reduction for the modulus q = 251.
Optimization of the pipeline design.
Scalable design can achieve various performance-area trade-offs.
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LAC scheme

Key generation stage: KG
Dense polynomial: coefficients ai ∈ [0, q).
Sparse polynomial: coefficients ri ∈ {−1, 0, 1}, and more than half of
the coefficients are 0.
a⃗ is a dense polynomial and s⃗ is a sparse polynomial.
SPM is invoked when computing a⃗⃗s.
Public key

(
seeda, b⃗

)
and secret key s⃗ are obtained.
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LAC scheme

Encryption stage: Enc(pk, m⃗, seed′)
a⃗ and b⃗ are dense polynomial. r⃗ is a sparse polynomial.
SPM is invoked when computing a⃗⃗r and b⃗⃗r.
Ciphertext c⃗ is obtained.
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LAC scheme

Decryption stage: Dec(sk, c⃗)
c⃗1 is dense polynomial and s⃗ is sparse polynomial.
SPM is invoked when computing c⃗1⃗s.
Message m⃗ is obtained.
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LAC scheme
For a sparse polynomial r⃗, its coefficients are chosen from the set
{−1, 0, 1}, so the multiplication operation in the algorithm can be
eliminated.
For LAC-Light, LAC128, LAC192 and LAC256, SPM takes up 48%,
54%, 66%, and 69% of the total time respectively.
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Overall Architecture

The proposed architecture consists of three memory blocks, including a
position memory ram_pos, p dense polynomial coefficient memories
ram_poly, an intermediate value and final result memory ram_res, three
data processing units, and a controller unit.

Controller Unit

ram_pos ram_res
Address

Calculating
Unit

pos address poly
Accumulating

Unit

Reduction
Unit

res
ram_poly

ram_poly

...
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Execution Flow

Step1: Once the accelerator is started, controller unit will prepare the
read address of ram_pos, and then issue a read request to ram_pos.
Step2: The outputs of ram_pos, including the position information of
sparse polynomial coefficients, are sent to Address Calculating Unit.

Controller Unit

ram_pos ram_res
Address

Calculating
Unit

pos address poly
Accumulating

Unit

Reduction
Unit

res
ram_poly

ram_poly

...
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Execution Flow

Step3: The outputs of Address Calculating Unit contain p read
addresses of ram_poly, then p read requests to ram_poly are issued in
parallel.
Step4: The Accumulating and Reduction Unit accumulates p outputs
from ram_poly and the intermediate value from ram_res. Then our new
modular reduction algorithm is used to correct each coefficients of the
result to [0, q), and the corrected result is sent to ram_res.

Controller Unit

ram_pos ram_res
Address

Calculating
Unit

pos address poly
Accumulating

Unit

Reduction
Unit

res
ram_poly

ram_poly

...
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Execution Flow

Step5: The read addresses of ram_poly are updated by controller unit
and then return to Step 3. Steps 3 to 5 are equivalent to the inner loop of
Algorithm SPM and the loop repeats until all the memory contents of
ram_res are updated.
Step6: After the inner loop, the controller unit updates the read
addresses of ram_pos and then return to step 1. Steps 1 and 6 are equal
to the for statement of the outer loop of Algorithm SPM. The counter of
the outer loop is ⌈h

p⌉.

Controller Unit

ram_pos ram_res
Address

Calculating
Unit

pos address poly
Accumulating

Unit

Reduction
Unit

res
ram_poly

ram_poly

...
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The choice of Block RAM and Distributed RAM

Block RAM is dedicated but width and depth is limited.
The total capacity of BRAM36/BRAM18 is 36/18 Kbit, and the
maximum width of them is 36/18 bits in dual-port mode.

Distributed RAM consists of Look Up Tables (LUTs), the most basic
logic element in FPGA.

RAM Type Width (Bit) Depth Mode
ram_pos DRAM p · log2(n) h/p Single-Port
ram_poly BRAM16 16 n Dual-Port
ram_res BRAM16 16 n/2 Dual-Port

ram_pos: get p positions per cycle (use parameter p to achieve
various performance-area trade-offs).
ram_poly and ram_res: take full advantage of BRAM’s bandwidth.
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Parallel Design-Outer Loop Parallel

The 2th and 3th lines determine
the read request of ram_pos.
Only one position can be read at
a time without parallel design.

We can get p positions once at
a time in our parallel design.
Accordingly, the outer loop is
accelerated by p times.
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Parallel Design-Outer Loop Parallel
There are p/2 identical copies.
For each ram_poly, each coefficient appears twice.
The read address is random and this structure can handle both of
even index and odd index.

16 bits 16 bits

...

p/2

a0 a1

a1 a2

.

.

.

.

.

.

an-1 a0

a0 a1

a1 a2

.

.

.

.

.

.

an-1 a0

Figure: ram_poly structure
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Parallel Design-Inner Loop Parallel
The maximum width of BRAM16 is 16bits in dual-port mode.
This means that 32 bits can be read from BRAM16 at a time, which
can accommodate four polynomial coefficients.
One port is used for reading, while another port is dedicated for
writing.
Inner loop is accelerated by 2 times.
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New Modular Reduction
Take p = 16 as an example, 16 8-bit coefficients are added and stored
in 12 bits.
28 ≡ 22 + 1(mod 251)
c ≡ 28c[11 : 8] + c[7 : 0] ≡ 22c[11 : 8] + c[11 : 8] + c[7 : 0]

An additional comparison and subtraction are needed for correcting
the result to [0, q).

c[11:0]

+
c[11:8]

c[7:0]

+
{c[11:8],0,0} 

-

M
U

X

q

q

c'[8:0]
c'[8:0]

c'[8:0]

stage1 stage2

+ addition - subtraction comparison

M
U

X multiplexer
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New Modular Reduction

Advantages of the new modular reduction:
It is more hardware friendly, because multiplication is not used.
Compared with compare-and-subtraction method, this method can
save hardware resources.
Thanks to the two-stage pipeline design, this method can achieve
higher hardware frequency.
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Implementation Results for LAC128

Hardware resources and frequency
The number of LUTs and FFs has been slightly increased, but the
frequency has been increased by up to 34%.
Thanks to the full use of BRAM18, our design reduced 2,4 BRAM18
for p=8,16, respectively.
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Implementation Results for LAC128

Cycles:
After using Dual-For-Loop-Parallel (DFLP) technique, the number of
cycles is halved compared to the previous work.
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Conclusion

An Efficient and Scalable Sparse Polynomial Multiplication
Accelerator for LAC on FPGA

Better parallel design: Dual-For-Loop-Parallel (DFLP) technique.
A new modular reduction for the modulus q = 251.
Higher frequency through optimization of the pipeline design.
Scalable design can achieve various performance-area trade-offs.

The clock cycle is halved and the frequency is increased with a small
resources cost.
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Thanks

Thanks for listening
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