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Abstract. This paper presents an improved Plantard’s modular arithmetic (Plantard
arithmetic) tailored for Lattice-Based Cryptography (LBC). Based on the improved
Plantard arithmetic, we present faster implementations of two LBC schemes, Kyber
and NTTRU, running on Cortex-M4. The intrinsic advantage of Plantard arithmetic
is that one multiplication can be saved from the modular multiplication of a constant.
However, the original Plantard arithmetic is not very practical in LBC schemes because
of the limitation on the unsigned input range. In this paper, we improve the Plantard
arithmetic and customize it for the existing LBC schemes with theoretical proof.
The improved Plantard arithmetic not only inherits its aforementioned advantage
but also accepts signed inputs, produces signed output, and enlarges its input range
compared with the original design. Moreover, compared with the state-of-the-art
Montgomery arithmetic, the improved Plantard arithmetic has a larger input range
and smaller output range, which allows better lazy reduction strategies during the
NTT/INTT implementation in current LBC schemes. All these merits make it possible
to replace the Montgomery arithmetic with the improved Plantard arithmetic in LBC
schemes on some platforms. After applying this novel method to Kyber and NTTRU
schemes using 16-bit NTT on Cortex-M4 devices, we show that the proposed design
outperforms the known fastest implementation that uses Montgomery and Barrett
arithmetic. Specifically, compared with the state-of-the-art Kyber implementation,
applying the improved Plantard arithmetic in Kyber results in a speedup of 25.02% and
18.56% for NTT and INTT, respectively. Compared with the reference implementation
of NTTRU, our NTT and INTT achieve speedup by 83.21% and 78.64%, respectively.
As for the LBC KEM schemes, we set new speed records for Kyber and NTTRU
running on Cortex-M4.
Keywords: Kyber, NTTRU, NTT, Cortex-M4, modular arithmetic, lattice-based
cryptography

1 Introduction
Quantum computers are being developed rapidly. Google [AAB+19] reported their 53-
qubit processor in 2019. Two years later, a Chinese research team [WBC+21] announced
a 66-qubit processor named Zuchongzhi. As is known, Shor’s algorithm can break the
conventional public-key cryptosystems such as RSA and ECC on a sufficiently large
quantum computer. Theoretically, a quantum computer with a few thousand qubits should
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break the 2048-bit RSA. However, there are still noise issues not being well understood.
A recent research [GE21] shows that factoring 2048-bit integer in RSA within 8 hours
needs a quantum computer with about 20 million noisy qubits. This implies the current
progress of quantum computers is still far from breaking the currently deployed 2048-bit
RSA or 256-bit ECC. On the other hand, IBM’s roadmap of quantum computers [Hac20]
claims that the number of qubits could be more than doubled per year, making a one
million-qubit machine possible in 2030. The progress of experimental quantum computers
and the surprising developments in the future motivated the cryptographic community to
expedite the study of post-quantum cryptographic algorithms to find suitable alternatives
to the traditional public-key cryptosystems within a decade or less.

In order to promote the development of post-quantum cryptography (PQC), NIST
initiated a standardization project in 2016 to solicit, evaluate, and standardize the post-
quantum cryptographic algorithms. Until now, in the third round of the standardization
process, seven finalists, including four key encapsulation mechanisms (KEM) and three
digital signature algorithms, have been selected. Among these algorithms, three out of the
four KEM finalists (i.e., Kyber [ABD+20], Saber [BMD+20], and NTRU [CDH+20]) are
from lattice-based cryptography (LBC), which indicates that LBC is competitive in terms
of security and implementation efficiency. Evaluating the implementation efficiency of
these candidates is an essential task [AASA+20] not only in the third round of the NIST
standardization project but also in the future commercial deployment.

Among all the operations in LBC, polynomial multiplication is one of the core opera-
tions. Therefore, a relatively low complexity method called Number Theoretic Transform
(NTT) algorithm is widely used to reduce the computational complexity of polynomial
multiplication. During the algorithm design of Kyber and NTTRU, the underlying ring
was properly chosen so that NTT could be used. Modular multiplication is the dominant
operation inside NTT, and the most commonly used modular multiplication algorithms
are Montgomery multiplication [Mon85] and Barrett multiplication [Bar86], which were
originally designed for large-moduli cryptosystems like RSA and ECC. However, the moduli
of the NIST LBC candidates are relatively small, for example, 3329 for Kyber [ABD+20],
12289 for Newhope [ADPS16], and 7681 for NTTRU [LS19]. Therefore, the product of
two polynomial coefficients will extend to at most a word size (32 or 64 bits). Based on
the word size characteristics of these moduli, Thomas Plantard proposed an efficient spe-
cialized word size modular multiplication (Plantard multiplication) [Pla21]. The proposed
Plantard multiplication by a constant introduces an l × 2l-bit multiplication operation
(l = 16/32 bit). Plantard suggested that if the l× 2l-bit multiplication can be implemented
in one multiplication instruction in the target platform, the Plantard multiplication by a
constant would consume one multiplication fewer than its Montgomery as well as Barrett
counterparts and could be well deployed in LBC schemes.

Motivation. Plantard [Pla21] purely focused on the theoretical design yet leaves much
room for further exploration. The original Plantard arithmetic cannot be efficiently
applied to the existing LBC schemes for the following reasons. First, the original Plantard
multiplication ([Pla21, Algorithm 8]) only presents a solution for multiplying unsigned
integers mod an odd modulus q. Previous literature [Sei18, BKS19, ABCG20, GKS21,
AHKS22] has shown that using unsigned integers in the NTT implementation of LBC
schemes is inefficient because it would introduce an extra addition into each butterfly
unit. Second, the input range of the original Plantard multiplication is mere [0, q], which
requires expensive modular reductions on the polynomial coefficients after each NTT layer.

Previous reports have offered solutions to these problems by adapting the Montgomery
arithmetic. Alkim et al. [ADPS16] showed that the large input range of Montgomery
reduction enables the so-called lazy reduction technique to reduce the use of expensive
modular reduction. Seiler et al. [Sei18] proposed a signed version of Montgomery reduction
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on the Intel platform, which further speeds up the butterfly units. The follow-up work
[BKS19, ABCG20, GKS21] further extended the signed Montgomery reduction to the
Cortex-M4 platform. The fastest Montgomery reduction for 16-/32-bit moduli [ABCG20,
GKS21, AHKS22] only consumes 2 cycles on the Cortex-M4 platform. Even though
Montgomery arithmetic could provide an efficient solution to most of the LBC schemes,
this paper shows that Plantard arithmetic could be a potential alternative to Montgomery
arithmetic in the LBC schemes with l-bit odd modulus, given that the target platform
could implement the l × 2l-bit multiplication in one multiplication.

Our Contributions. This paper aims to improve, customize, and implement the Plantard
arithmetic for the existing LBC schemes. Our contributions are threefold:

• First, we present an improved Plantard arithmetic for signed integers with its
correctness proof. The proposed method is inspired by the observation that the
moduli in the existing LBC schemes are normally several times smaller than the
modulus constraint in the original Plantard arithmetic.

• Second, we detail the advantages of the improved Plantard arithmetic over its original
version, Montgomery and Barrett arithmetic. With some tweaks over the original
algorithm, the improved Plantard arithmetic not only supports signed integers but
also extends its input range and narrows down its output range, thus enabling better
lazy reduction strategies in NTT/INTT. Besides, it inherits the advantage of the
Plantard multiplication, i.e., saving one multiplication when one of the two operands
is a constant. All these merits make it possible to replace the Montgomery and
Barrett arithmetic with the improved Plantard arithmetic in LBC schemes on some
platforms.

• Third, we present an efficient implementation of the improved Plantard arithmetic
for 16-bit odd moduli using the smulw{b,t} instruction to perform the 16× 32-bit
multiplication on Cortex-M4. By replacing the state-of-the-art Montgomery and
Barrett arithmetic with the improved Plantard arithmetic, we demonstrate that the
proposed design enables more efficient polynomial arithmetic, namely NTT, INTT,
and modular reduction, resulting in faster Kyber and NTTRU implementations on
Cortex-M4. To the best of our knowledge, this is the first assembly implementation
of NTTRU on Cortex-M4, and we set new speed records for Kyber and NTTRU.

It should be noted that our optimizations for Kyber and NTTRU are not limited to
Cortex-M4 and can be extended to Cortex-M7 as well as some 32-bit microcontrollers
without SIMD extensions, e.g., the SiFive Freedom E310 with a 32-bit E31 RISC-V core
[SiF] (see Subsection 4.3 for more details about the extensibility of our optimizations).

Code. The implementations of Kyber and NTTRU are open source and available at
https://github.com/UIC-ESLAS/ImprovedPlantardArithmetic.

2 Preliminaries
In this section, we first briefly introduce the variants of the Learning With Errors (LWE)
problem. Then, the algorithms of Kyber and NTTRU are described. Finally, the details of
the NTT and related modular arithmetic are given.

The Learning With Errors (LWE) problem is systematically defined by Regev in
[Reg05] for constructing public-key cryptosystems under the quantum random oracle
model. Lyubashevsky et al. [LPR10] introduced a Ring algebraic structure for LWE,
in effect solving the inefficient problem of LWE-based schemes; this variant is called

https://github.com/UIC-ESLAS/ImprovedPlantardArithmetic
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Ring-LWE. More recently, Langlois and Stehlé [LS15] proposed the Module-LWE problem,
which bridges LWE and Ring-LWE. One of the NIST PQC KEM finalists, Kyber, is
constructed based on Module-LWE. The original NTRU, which was proposed in 1996 and
first published in 1998 [HPS98] by Hoffstein, Pipher, and Silverman, has gone through a
long research history. As one of the KEM finalists, NTRU has been significantly improved
in terms of security and efficiency compared with the original design.

2.1 Kyber
The security of Kyber is based on the Module-LWE problem, whose formal definition is
given as follows:

(A,b = AT s + e). (1)

Here, the secret vector s is sampled from a centered binomial distribution Bη(Rk×1
q ),

where k is the dimension of the underlying Module-LWE problem. The public matrix A
is sampled from a uniform random distribution U(Rk×kq ). The decisional Module-LWE
problem indicates that (A,b) is computationally indistinguishable from a uniform random
sampling.

The polynomial ring used within Kyber is Rq = Zq[X]/(Xn + 1) with q = 3329 and
n = 256 across all parameter sets. Each polynomial coefficient in Rq can be accommodated
in a 16-bit integer, which enables a 16-bit NTT polynomial multiplication. Kyber constructs
a CCA-secure KEM from a CPA-secure public key encryption (PKE). Kyber PKE consists
of key generation (Algorithm 1), encryption (Algorithm 2), and decryption (Algorithm 3).
We refer readers to Kyber’s specification [ABD+20] for more details about the CCA-secure
KEM. The core operation of Kyber in key generation and encryption is the matrix-vector
multiplication, i.e., Â ◦NTT(s) and ÂT ◦ t̂, where each element of the matrix and vector
is a polynomial.

Algorithm 1 Kyber.PKE Key Generation [ABD+20]
Output: pk = (b̂, ρ), sk = ŝ

1: seed← {0, · · · , 255}32

2: ρ, σ ← SHAKE256(64, seed)
3: Â← GenMatrixA(ρ)
4: s← SampleVec(σ, 0)
5: e← SampleVec(σ, 1)
6: b̂← Â ◦NTT(s) + NTT(e)
7: return pk = (b̂, ρ), sk = ŝ

2.2 NTRU and NTTRU
NTRU, as a finalist in the third round of the NIST PQC project, is the combination of
two first-round candidates, NTRUEncrypt [ZCHW] and NTRU-HRSS-KEM [SHRS]. The
KEM specified in the NTRU’s specification is constructed using a generic transformation
of a correct deterministic public-key encryption scheme (correct DPKE)[CDH+20]. The
polynomial arithmetic of NTRU operates in three polynomial rings Z3[x]/Φn,Zq[x]/Φn,
and Zq[x]/ (Φ1 ·Φn) with Φ1 = (x− 1) and Φn =

(
xn−1 + xn−2 + · · ·+ 1

)
.

NTTRU[LS19], an NTT-friendly variant of NTRU, is constructed using a partially
correct probabilistic public-key encryption scheme (partially correct PPKE). The speed
of NTTRU is faster than other NTRU variants, including the third-round finalist NTRU
and alternate candidate NTRU Prime. However, the authors only provided security proof
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Algorithm 2 Kyber.PKE Encryption [ABD+20]
Input: pk = (b̂, ρ), message µ ∈ Rq, seed coin ∈ {0, · · · , 255}32

Output: Ciphertext (u′, h)
1: Â← GenMatrixA(ρ)
2: s′ ← SampleVec(coin, 0)
3: e′ ← SampleVec(coin, 1)
4: e′′ ← SampleVec(coin, 2)
5: t̂← NTT (s′)
6: u← NTT−1

(
ÂT ◦ t̂

)
+ e′

7: v′ ← NTT−1
(
b̂T ◦ t̂

)
+ e′′ + µ

8: return (u′ = Compress(u), h = Compress (v′))

Algorithm 3 Kyber.PKE Decryption [ABD+20]
Input: Ciphertext c = (u′, h), secret key sk = ŝ
Output: Message µ ∈ Rq

1: u← Decompress (u′)
2: v′ ← Decompress(h)
3: return µ = v′ −NTT−1 (ŝT ◦NTT(u)

)

under the classical random oracle model (ROM) instead of the quantum random oracle
model (QROM).

The public key encryption scheme of NTTRU consists of key generation (Algorithm 4),
encryption (Algorithm 5), and decryption (Algorithm 6). The polynomial ring of NTTRU
is Rq = Zq[X]/(X768 −X384 + 1), where q = 7681. The β768

2 is a binomial distribution,
which generates a1, a2, a3, a4 ← {0, 1}768, and outputs a1 +a2−a3−a4 mod± 3 ∈ Rq. The
modular reduction (mod± q) maps integers to the range (− q2 ,

q
2 ). The NTT’s suitability

for NTTRU comes from its polynomial ring Z7681[X]/(X768 −X384 + 1), and we will give
more details in Subsection 2.3.

Algorithm 4 NTTRU.PKE Key Generation [LS19]
Output: sk = f, pk = h

1: f ′ ← β768
2

2: f := 3f ′ + 1
3: if f is not invertible in Rq, restart
4: g ← β768

2
5: h := 3g/f
6: return (sk = f, pk = h) . both sk and pk are in NTT representation

2.3 NTT
In this paper, NTT is classified into 16-bit NTT [LS19, ABD+20] and 32-bit NTT [CHK+21,
ZHLR22] according to the modulus size. For example, the modulus size of Kyber and
NTTRU are both smaller than 216, so the NTT of these moduli is classified into the 16-bit
NTT. The modulus of Dilithium is q = 8380417, which is larger than 16-bit and smaller
than 23-bit; thus, the NTT of modulus q = 8380417 is classified into the 32-bit NTT. We
mainly focus on the 16-bit NTT in this paper.

NTT multiplication over the polynomial ring Zq[X]/f(X) is based on the fact that the
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Algorithm 5 NTTRU.PKE Encryption [LS19]
Input: Message m, randomness r, pk = h
Output: Ciphertext c

1: c := hr +m (computed in NTT representation)
2: return c

Algorithm 6 NTTRU.PKE Decryption [LS19]
Input: Ciphertext c, sk = f (both in NTT representation)
Output: Message m

1: m :=
(
cf mod± q

)
mod± 3

2: return m

polynomial f(X) can be factored as

f(X) =
n−1∏
i=0

fi(X)(mod q),

where fi(X) are small-degree (degree-0 for a complete-NTT, higher degree for an incomplete-
NTT [CHK+21]) polynomials. The polynomial multiplication of a, b ∈ Zq[X]/f(X) is first
calculated using NTT as

ai = amod fi(X) and bi = bmod fi(X) (2)

for i = 0, · · · , n − 1. Then we compute the base multiplication as a0b0, · · · , an−1bn−1.
Finally, using the inverse NTT (INTT), we find the result polynomial c such that c =
abmod f(X).

For Kyber, the polynomial f(X) = X256 + 1 can be factored, with the help of a
primitive 256-th root of unity ζ, as

X256 + 1 =
127∏
i=0

(
X2 − ζ2i+1) .

This factorization is incomplete since f(X) is factored as degree-1 polynomials instead of
degree-0. Therefore, the NTT of Kyber is a 7-layer incomplete-NTT.

For NTTRU, the polynomial f(X) = X768 −X384 + 1 is initially split into (X384 +
684)(X384 − 685), then all the way down to irreducible polynomials X3 ± r. The NTT of
NTTRU consists of 8 layers of butterflies, and we refer readers to [LS19] for more details.

The commonly used computing structures of NTT are Cooley-Tukey (CT) butterfly
[CT65] and Gentleman-Sande (GS) butterfly [GS66]. The CT butterfly accepts inputs in
normal order and generates outputs in bit-reverse order. In contrast, the GS butterfly
takes inputs in bit-reverse order and produces outputs in normal order. Therefore, a hybrid
structure which uses CT butterfly for NTT and GS butterfly for INTT will accept inputs
and generate outputs both in normal order without any bit-reversal operations.

2.4 Modular Arithmetic
In this paper, we divide the modular reduction into two types: mod and mod±, where
c mod q obtains a result in [0, q) while c mod ± q gets a signed result in (− q2 ,

q
2 ). The

“modular reduction” in this paper refers to both types of modular reduction. The modular
multiplication c = a ·b mod q is normally divided into two parts: the multiplication c = a ·b
and the modular reduction c mod q. The modular reduction cmod q can be done by
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c−bc/qcq, where the division operation is non-constant-time in modern computers. The non-
constant-time characteristic of division prevents it from being used in the implementation
of cryptographic algorithms due to security concerns. The commonly used constant time
modular reduction algorithms are Montgomery reduction [Mon85] and Barrett reduction
[Bar86]. Their basic idea is to replace the non-constant-time division with constant-time
multiplications and shifts.

In current LBC schemes, the known fastest modular arithmetic is the signed version
of Montgomery multiplication [Sei18], which is given in Algorithm 7. The constant β is
often set to word size 2l so that the modulus q fits in one word. For instance, β = 216

when q < 216 and β = 232 when 216 ≤ q < 232. The algorithm replaces the division by
multiplications and shifts operations. It requires 3 multiplications.

Algorithm 7 Signed Montgomery multiplication [Sei18]
Input: Operand a, b such that −β2 q ≤ ab <

β
2 q, where β = 2l with the machine word size

l, the odd modulus q ∈ (0, β2 )
Output: r ≡ abβ−1 mod q, r ∈ (−q, q)

1: c = c1β + c0 = a · b
2: m = c0 · q−1 mod± β. mod± obtains a signed product, q−1 is a precomputed constant
3: t1 = bm · q/βc . shift right operation
4: r = c1 − t1
5: return r

The Barrett reduction [Bar86] approximately computes bc/qc using b(c · λ)/22l′+γc,
where λ is a precomputed constant (λ = b22l′+γ/qc) and l′ satisfies 2l′−1 < q < 2l′ . Note
that γ is an arbitrary integer used to control the accuracy of the approximation (the larger
the value, the higher the accuracy). The algorithm of Barrett multiplication is given in
Algorithm 8, and it also requires 3 multiplications. Barrett algorithm is different from
Montgomery algorithm. Its implementation generally consists of a shift operation for a
non-word-size offset (2l′ + γ), which would require an explicit shift instruction during the
implementation on Cortex-M4. We can get the signed version with minor modifications1.

Algorithm 8 Barrett multiplication [Bar86]
Input: Operand a, b such that 0 ≤ ab < 22l′+γ , the modulus q satisfying 2l′−1 < q < 2l′ ,

and the precomputed constant λ =
⌊
22l′+γ/q

⌋
Output: r ≡ abmod q, r ∈ [0, q]

1: c = a · b
2: t = b(c · λ)/22l′+γc
3: r = c− t · q
4: return r

Plantard [Pla21] proposed a new modular multiplication (Plantard multiplication)
tailored for the word size moduli and claimed that the proposed algorithm outperforms
other existing solutions, including Montgomery and Barrett multiplication, in some appli-
cation scenarios. The original Plantard multiplication is given in Algorithm 9. Here, we
denote X mod 2l′ as [X]l′ , X >> l′ as [X]l′ , where l′ is a positive integer. The Plantard
multiplication also needs 3 multiplications, which is the same as Montgomery and Barrett
multiplication. But the key advantage of Plantard multiplication is that one could pre-
compute the product of b and q−1 mod 22l when operand b is a constant. This introduces
an l × 2l-bit multiplication a · (bq′). If the target platform can compute the l × 2l-bit

1Signed Barrett reduction in Kyber’s implementation https://github.com/pq-crystals/kyber/blob/
master/ref/reduce.c

https://github.com/pq-crystals/kyber/blob/master/ref/reduce.c
https://github.com/pq-crystals/kyber/blob/master/ref/reduce.c
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multiplication in one multiplication instruction, then one multiplication could be saved for
the overall modular multiplication. This advantage mainly comes from the fact that the
product of two operands c = a · b is only used once in Plantard multiplication, while its
Montgomery and Barrett counterparts use it twice (see step 2,4 in Algorithm 7 and step
2,3 in Algorithm 8).

Algorithm 9 Original Plantard Multiplication [Pla21]
Input: Unsigned integers a, b ∈ [0, q], q < 2l

φ , φ = 1+
√

5
2 , q′ ≡ q−1 mod 22l, where l is the

machine word size
Output: r ≡ ab(−2−2l) mod q where r ∈ [0, q]

1: r =
[(

[[abq′]2l]l + 1
)
q
]l

. bq′ could be precomputed when b is constant
2: return r

Despite this advantage, it should be noted that the original algorithm is designed
for unsigned integer inputs within the range [0, q]. It has been well-illustrated that
using a signed version of modular arithmetic in NTT/INTT will further speed up the
computation. Therefore, the original Plantard multiplication could be extended to support
signed arithmetic and purchase faster NTT/INTT implementations.

2.5 Target Platform: Cortex-M4
Our target platform is STM32F407G-DISC1, with a 32-bit ARM Cortex-M4 processor
implementing the ARMv7E-M instruction sets. It provides 16 32-bit general-purpose
registers, but only 14 of them are available for programming. Because Cortex-M4 supports
floating-point (FP) computation, 32 32-bit FP registers are available for programming and
can be used to “cache” frequently-used values.

The Cortex-M4 also supports Single Instruction Multiple Data (SIMD) instructions
that can operate two halfwords or four bytes in parallel. The essential instructions in
our implementation include smul{b,t}{b,t}, smulw{b,t}, and ldrd. We use Rd to
represent the destination register; Rm and Rn represent two source registers. The smulbb
instruction multiplies the bottom halfword of Rm by the bottom halfword of Rn and writes
the result to Rd. The smulwb instruction multiplies Rm by the bottom halfword of Rn;
extracts the most significant 32 bits of the result, and writes it to Rd. The ldrd R8, R9,
[R3, #0x20] instruction loads R8 from the address R3+32 and loads R9 from the address
R3+36.

3 Improved Plantard Arithmetic
This section presents the improved Plantard arithmetic, which was initially proposed in
[Pla21]. Our improvement is built by first imposing a slight restriction on the modulus
based on the observation of current LBC schemes (e.g., Kyber and NTTRU); then, several
tweaks are proposed to improve the Plantard arithmetic. Detailed correctness proof and
advantages of the improved algorithm will be presented.

3.1 Improved Plantard Multiplication
The improved Plantard multiplication is presented in Algorithm 10. Due to the adaptation
of signed numbers, we denote (X mod± 2l′) as [X]l′ , (X >> l′) as [X]l′ for a positive integer
l′. Here, (X >> l′) is equivalent to bX/2l′c or dX/2l′e for a positive or negative number,
respectively. For simplicity, we use bX/2l′c to represent (X >> l′) for sign-unknown
number X unless a negative number is explicitly specified. We denote q as an odd modulus,
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Algorithm 10 Improved Plantard multiplication
Input: Two signed integers a, b ∈ [−q2α, q2α], q < 2l−α−1, q′ = q−1 mod± 22l

Output: r = ab(−2−2l) mod± q where r ∈ (− q2 ,
q
2 )

1: r =
[(

[[abq′]2l]l + 2α
)
q
]l

2: return r

l as the minimum word size (e.g., 16, 32 or 64 bits) such that q < 2l−α−1, where α is a
small integer.

The improved Plantard multiplication is based on the observation that the moduli
adopted by most of the existing LBC schemes are several times smaller than the restriction
q < 2l

φ in the original algorithm [Pla21], e.g., 12-bit modulus 3329 in Kyber, 13-bit modulus
7681 in NTTRU, 23-bit modulus 8380417 in Dilithium. Thus, there are still margins
between the original constraint and the moduli adopted in LBC schemes. Besides, all
of the current state-of-the-art modular arithmetic is implemented with signed integers,
which can eliminate extra additions of the multiple of q to ensure a positive output of the
butterfly unit. Considering that the Plantard multiplication proposed by Thomas Plantard
has the advantage of multiplying a constant (i.e., one multiplication is saved) but only
supports unsigned integers, we believe that adapting signed integers for this algorithm will
lead to more efficient modular arithmetic in LBC schemes.

We start by first introducing a small integer α ≥ 0, which narrows down the range
of the modulus q from q < 2l

φ to q < 2l−α−1 < 2l−α
φ . Based on this tweak, we can then

replace the original main step r =
[(

[[abq′]2l]l + 1
)
q
]l

by r =
[(

[[abq′]2l]l + 2α
)
q
]l
. In

order to adapt signed inputs for this algorithm, we modify the inequality that maintains
the correctness of this algorithm from 0 < q2l−p0q+ab < 22l to 0 < q2l+α−p0q+ab < 22l

under certain circumstances (see Subsection 3.2 for more details). We will show the
correctness proof and advantages of the improved algorithm in the following two parts.

3.2 Proof of the Improved Plantard Multiplication
Theorem 1 states the correctness of Algorithm 10, and we will give the specific proof below.

Theorem 1 (Correctness). Let q be an odd modulus, l be the minimum word size (power
of 2 number, e.g., 16, 32, and 64) such that q < 2l−α−1, where α ≥ 0, then Algorithm 10
is correct for −q2α ≤ a, b ≤ q2α.

Proof of Theorem 1. The main step of Algorithm 10 is to compute r =
[(

[[abq′]2l]l + 2α
)
q
]l
,

namely:

r =


(⌊

abq′mod± 22l

2l

⌋
+ 2α

)
q

2l

 .
1. We first check that r ∈ (− q2 ,

q
2 ). Since

⌊
abq′mod± 22l

2l

⌋
∈ [−2l−1, 2l−1 − 1], we have

⌈
(−2l−1 + 2α)q

2l

⌉
≤r ≤

⌊
(2l−1 − 1 + 2α)q

2l

⌋
⌈
−q2 + q

2l−α
⌉
≤r ≤

⌊
q

2 + (2α − 1)q
2l

⌋
.
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Since q
2l−α <

1
2 , we can get r > − q2 from the left-hand side of the inequation. Let’s

consider q
2 + (2α−1)q

2l on the right-hand side; since q < 2l−α−1, we have

(2α − 1)q
2l <

q2α
2l <

2α2l−α−1

2l = 1
2 .

Because q is an odd number, then⌊
q

2 + (2α − 1)q
2l

⌋
=
⌊q

2

⌋
<

⌊
q + 1

2

⌋
.

Therefore, the result r lies in (− q2 ,
q
2 ).

2. Then, we check that r = ab(−2−2l) mod± q. The proof is very similar to the
one in [Pla21], except that we introduce a small integer α ≥ 0 and impose a
stricter constraint q < 2l−α−1 on q. Since q is an odd number, there exists a
p = abq−1 mod± 22l so that

pq − ab ≡
(
abq−1) q − abmod 22l ≡ ab− abmod 22l ≡ 0 mod 22l.

Therefore, pq − ab is divisible by 22l, so

ab
(
−2−2l)mod q ≡ pq − ab

22l .

Let p1 =
⌊
p
2l
⌋
, p0 = p − p12l = pmod± 2l and p0 ∈ [−2l−1, 2l−1), then instead of

analyzing q2l − p0q + ab in the original work, we slightly modify the equation to
q2l+α − p0q + ab. The tweak here is the key to the improved Plantard arithmetic,
which allows us to accept both positive and negative inputs and extend the range of
the inputs a, b to [−q2α, q2α]. We will further prove that this modification will not
change its correctness under the constraints in Theorem 1.
The correctness of the Plantard multiplication proposed by Thomas Plantard is
based on the inequality: 0 < q2l − p0q + ab < 22l. We now check that our modified
equation q2l+α − p0q + ab also satisfies this inequality:

0 < q2l+α − p0q + ab < 22l (3)

under the restrictions q < 2l−α−1, α ≥ 0, and − q2α ≤ a, b ≤ q2α.
(1) When ab > 0 and p0 < 0, we have

q2l+α − p0q + ab ≤ q2l+α + q2l−1 + q222α = q
(
2l+α + 2l−1 + q22α)

< 2l−α−1 (2l+α + 2l−1 + 2l−α−122α)
= 2l−α−1 (3 · 2l+α−1 + 2l−1) = 3 · 22l−2 + 22l−α−2

=
(
3 + 2−α

)
· 22l−2 ≤ 4 · 22l−2 = 22l when α ≥ 0.

Therefore, for a small integer α ≥ 0, we have q2l+α − p0q + ab < 22l. The proof of
the right-hand side of Equation 3 ends.
(2) When ab < 0 and p0 > 0, we have

q2l+α − p0q + ab > q2l+α − q2l−1 − q222α = q
(
2l+α − 2l−1 − q22α)

> q
(
2l+α − 2l−1 − 2l−α−122α) = q

(
2l+α−1 − 2l−1) .
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It is obvious that 2l+α−1 − 2l−1 ≥ 0 for any small integer α ≥ 0. Therefore,
we have q2l+α − p0q + ab > 0. The proof of the left-hand side of Equation 3 ends.
Overall, we obtain that

0 < q2l+α − p0q + ab

22l < 1.

Combining with the fact that pq − ab is divisible by 22l, we have the following
equation:

ab
(
−2−2l)mod q ≡ pq − ab

22l ≡
⌊
pq − ab

22l + q2l+α − p0q + ab

22l

⌋
≡
⌊
qp12l + q2l+α

22l

⌋

≡
⌊
q(p1 + 2α)

2l

⌋
≡

q
(⌊

abq−1 mod± 22l

2l

⌋
+ 2α

)
2l

 .

For signed inputs, it is equivalent to ab(−2−2l) mod± q =
[(

[[abq′]2l]l + 2α
)
q
]l

= r.

In summary, the improved Plantard multiplication is achieved by first imposing a
stricter constraint on the modulus q. Then, the inequality that guarantees the correctness
is modified into 0 < q2l+α−p0q+ab < 22l. Note that the improved Plantard multiplication
can be easily modified into a word size modular reduction (Plantard reduction).

3.3 Comparisons
Original Plantard multiplication. Although the main steps between the improved and
original Plantard multiplications have only a minor difference, our tweaks make it more
efficient and practical in LBC schemes thanks to the following merits.

• The improved algorithm supports signed inputs and produces a result in (− q2 ,
q
2 ),

while the original version only accepts unsigned integers in [0, q]. The advantage of
using signed integers in LBC schemes has been fully discussed in previous work, i.e.,
eliminating an extra addition during the butterfly computation.

• Besides, our tweaks extend the input range of Plantard multiplication from [0, q] up
to [−q2α, q2α] and change the output range from [0, q] to (− q2 ,

q
2 ), thus eliminating

the final correction in the original version [Pla21, Algorithm 8]. A larger input
range is especially useful in NTT/INTT because supporting more redundancy can
reduce unnecessary modular reduction on the coefficients (refer to the lazy reduction
strategy in Subsubsection 4.2.3).

Montgomery and Barrett arithmetic. The improved modular arithmetic also has several
merits over the state-of-the-art Montgomery and Barrett arithmetic in LBC schemes.

• First of all, as introduced in [Pla21], the intrinsic advantage of the Plantard mul-
tiplication is that it costs one multiplication fewer than Montgomery and Barrett
multiplication when one of the two inputs is fixed. This is achieved by precomputing
the product of q′ and the constant input modulo 22l. Moreover, the Barrett arith-
metic may require an explicit shift operation for a non-word-size offset, which will
further decrease its efficiency. We refer readers to Subsubsection 4.2.4 for a detailed
comparison with the Barrett arithmetic.
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• Secondly, the improved Plantard multiplication extends the input range to [−q2α, q2α].
We can easily modify this algorithm into the Plantard reduction that accepts input
in [−q222α, q222α] (see Algorithm 13 for details). Compared with the Montgomery
reduction that accepts [−2l−1q, 2l−1q], the improved Plantard reduction supports
more redundancy if α is big enough. Therefore, we recommend choosing the largest
α that satisfies the prerequisites so that the improved algorithm has the largest input
range. The input range of the proposed modular reduction is hard to compare with
the Barrett reduction directly because the input range of the Barrett arithmetic
depends on the parameter setting, i.e., q and γ in Algorithm 8. The Barrett reduction
used inside NTT/INTT in Kyber and NTTRU only needs to reduce 16-bit signed
integers. Our modular reduction (see Algorithm 15) can also cover all 16-bit signed
integers and can be a perfect replacement for the Barrett reduction in the NTT/INTT
of these LBC schemes.

• The output range of the improved algorithm is narrowed down to (− q2 ,
q
2 ), which is

the same as the state-of-the-art Barrett reduction presented in [AHKS22, Algorithm
3.2]. Compared with the output range [−q, q] of the Montgomery multiplication,
the improved Plantard multiplication halves or slows down the growing rate of the
coefficient size in the NTT with CT butterflies or the INTT with GS butterflies,
respectively. Together with the larger input range, the improved Plantard multiplica-
tion enables better lazy reduction strategies in NTT/INTT (see Subsubsection 4.2.3).

With all these merits over the Montgomery and Barrett arithmetic, the improved
Plantard arithmetic has two weak spots. If we precompute the product of q′ and the twiddle
factors modulo 22l in NTT, the size of the precomputed intermediate result will be doubled.
First, it needs to deal with the l × 2l-bit multiplication, which may not be applicable
to architectures like AVX2 and NEON. However, we show that this method is perfectly
suitable for Cortex-M4, Cortex-M7 and some 32-bit microcontrollers (see Subsection 4.3).
Second, the double-size twiddle factors are normally placed into the Read-Only Memory
(ROM) instead of the Random Access Memory (RAM). Consequently, the side effect is
that we need more cycles to load them into registers (see Subsubsection 4.2.2 for detailed
discussion); this will not affect the stack usage. Nevertheless, arithmetic and experimental
analyses show that the overall cycle reduction obtained from the aforementioned merits
could offset the cycle increment introduced by twiddle factor loading.

4 Optimized Implementation on Cortex-M4
In this section, we present an efficient implementation of the improved Plantard arithmetic
for 16-bit word-size moduli on Cortex-M4 and apply it to Kyber and NTTRU. Then,
the extensibility of the improved Plantard arithmetic on other platforms and schemes is
discussed. Note that the Plantard arithmetic mentioned below refers to the improved
Plantard arithmetic presented in Section 3.

4.1 Efficient Plantard Arithmetic for 16-bit Modulus
Before moving forward into the implementation details, it is assumed that there exists a
small integer α ≥ 0 such that the prerequisite (q < 2l−α−1) mentioned in Theorem 1 is
established (which is the case for most of the LBC schemes, including Kyber and NTTRU).
The word size in the following parts is set to l = 16 to support the 16-bit arithmetic in
Kyber and NTTRU. As recommended in Subsection 3.3, the maximum α that satisfies
Theorem 1 is α = 3/α = 2 for Kyber/NTTRU.

Based on the Plantard multiplication described in Algorithm 10, we propose a 2-cycle
modular multiplication by a constant for 16-bit moduli. The detailed instruction sequence
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Algorithm 11 The 2-cycle improved Plantard multiplication by a constant on Cortex-M4
Input: An l-bit signed integer a ∈ [−2l−1, 2l−1), a precomputed 2l-bit integer bq′ where b

is a constant and q′ = q−1 mod± 22l

Output: rtop = ab(−2−2l) mod± q, rtop ∈ (− q2 ,
q
2 )

1: bq′ ← bq−1 mod± 22l . precomputed
2: smulwb r, bq′, a . r ← [[abq′]2l]l
3: smlabb r, r, q, q2α . rtop ← [q[r]l + q2α]l
4: return rtop

Algorithm 12 The 3-cycle signed Montgomery multiplication on Cortex-M4 [ABCG20]
Input: Two l-bit signed integers a, b such that ab ∈ [−q2l−1, q2l−1)
Output: rtop = ab2−l mod± q, rtop ∈ (−q, q)

1: mul c, a, b
2: smulbb r, c,−q−1 . r ← [c]l ·

(
−q−1)

3: smlabb r, r, q, c . rtop ← [[r]l · q]l + [c]l
4: return rtop

is shown in Algorithm 11. This is achieved by observing that a part of the main step
of the Plantard multiplication is abq′mod± 22l. If the multiplicand b is a constant, one
can directly precompute bq′mod± 22l where q′ = q−1 mod± 22l. Recall that the input of
Algorithm 10, a and b, satisfies a, b ∈ [−q2α, q2α] and ab ∈ [−q222α, q222α]. We can always
reduce the constant b down to [0, q) during the precomputation of bq′. Therefore, the
input range of a can be extended to [−q22α, q22α]. Besides, for the parameter α, we have
2l−α−2 < q < 2l−α−1 when the maximum α is chosen. Therefore, by combining 2l−α−2 < q
and a ∈ [−22αq, 22αq], we conclude that a lies in [−2l+α−2, 2l+α−2]. For any integer α > 0,
the input a covers every 16-bit signed integer, i.e., a ∈ [−2l−1, 2l−1).

The main step of Algorithm 10 is [([[abq′]2l]l + 2α)q]l. The smulwb instruction
in Algorithm 11 computes [[abq′]2l]l in 1 cycle, and the intermediate result is saved in the
bottom half of r. Here, adding 2α to the bottom half of r before the multiplication with q
might produce a carry to the top half of the 32-bit register r. This would cause an error
when the top half of r is not zero. This problem can be addressed by computing the main
step separately as [q · [[abq′]2l]l + q2α]l with the smlabb instruction. Here, the term q2α
is fixed and can be precomputed without extra runtime overhead. The final result locates
in the top half of r. Compared with Algorithm 12, the state-of-the-art 16-bit Montgomery
multiplication implementation on Cortex-M4 [ABCG20], we reduce one multiplication by
precomputing the product of q−1 and the constant operand b. As for its comparison with
the Barrett arithmetic, we refer to Subsubsection 4.2.4 for more details.

Note that [LS19] proposed a similar trick for Montgomery multiplication with the
AVX2 instructions, which is improved over the work in [Sei18]. It is achieved by precom-
puting q−1/−q−1 with the bottom half of c (see step 2 of Algorithm 7/Algorithm 12).
Unfortunately, it is not suitable for Cortex-M4 because the trick shown in [LS19] highly
relies on the two-instruction-fashion multiplication, whereas the 16/32-bit multiplication on
Cortex-M4 is carried out in a single instruction. Applying their optimization on Cortex-M4
introduces extra multiplication instructions as stated in [BKS19, Subsection 3.2].

As for the multiplication of two variables, we present a 2-cycle Plantard reduction over
a 32-bit signed product c ∈ [−q222α, q222α], which is shown in Algorithm 13. Instead of
using smulwb as we did in Algorithm 11, the mul instruction is used to compute [[cq′]2l]l,
and the intermediate result locates in the top half of r. The result is then obtained by the
smlatb instruction. It is worth noting that the input range of Algorithm 13 is q22α−l+1

times larger than the Montgomery reduction (the reduction version of Algorithm 12).
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Algorithm 13 The 2-cycle improved Plantard reduction on Cortex-M4
Input: A 2l-bit signed integer c ∈ [−q222α, q222α]
Output: rtop = c(−2−2l) mod± q, rtop ∈ (− q2 ,

q
2 )

1: q′ ← q−1 mod± 22l . precomputed
2: mul r, c, q′
3: smlatb r, r, q, q2α
4: return rtop

Since α is chosen to ensure q < 2l−α−1, we have q2α+1 < 2l−α−1 · 2α+1 = 2l. As for the
maximum α, we have q2α+1 ≈ 2l, then q22α+1−l = q2α+1−l · 2α ≈ 2α. Therefore, the input
range of the Plantard reduction is approximately 2α times larger than the Montgomery
reduction. The excellent input range and output range of the improved Plantard arithmetic
enable better lazy reduction strategies in NTT/INTT (see Subsubsection 4.2.3).

4.2 Efficient 16-bit NTT/INTT Implementation
This subsection details the improvements the improved Plantard arithmetic brings to the
butterfly unit, layer merging, and lazy reduction in NTT/INTT.

4.2.1 Butterfly Unit

The core operations in NTT/INTT are performed in the butterfly unit. Commonly, there
are two types of butterfly structures, namely the CT butterfly and GS butterfly. In
Kyber, using CT butterfly in NTT and GS butterfly in INTT is a common strategy to
avoid coefficients flipping. However, recent reports [CHK+21, AHKS22] state that using
CT butterfly for both NTT and INTT in LBC schemes would also result in faster code.
For both strategies in 16-bit NTT/INTT, one needs to compute CT/GS butterfly over
two 32-bit packed integers and return two 32-bit packed results [BKS19, ABCG20]. The
improved Plantard multiplication by a constant (Algorithm 11) can be well adapted into
the double CT/GS butterflies with the help of the smulw{b,t} instruction on Cortex-M4.

Algorithm 14 Double CT butterfly on Cortex-M4
Input: Two 32-bit packed signed integers a, b (each containing a pair of 16-bit signed

coefficients), the 32-bit twiddle factor ζ
Output: a = (atop + btopζ)||(abottom + bbottomζ), b = (atop − btopζ)||(abottom − bbottomζ)

1: smulwb t, ζ, b
2: smulwt b, ζ, b
3: smlabb t, t, q, q2α
4: smlabb b, b, q, q2α
5: pkhtb t, b, t, asr#16
6: usub16 b, a, t
7: uadd16 a, a, t
8: return a, b

The key operation in the butterfly unit is the modular multiplication by a proper
twiddle factor ζ, which is a precomputed constant. It is common to store the twiddle
factors in the Montgomery domain when using Montgomery arithmetic. Similar to
Montgomery arithmetic, Plantard arithmetic also produces a result in a special domain,
namely c(−2−2l) mod± q. Therefore, to integrate Plantard arithmetic into the butterfly
unit, we also store the twiddle factors in the “Plantard” domain by multiplying each
twiddle factor with a constant −22l mod q. Besides, to utilize the improved Plantard
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multiplication by a constant (Algorithm 11) in the butterfly unit, one also needs to
multiply q−1 mod± 22l by the twiddle factor ζ in the “Plantard” domain modulo 22l,
namely ζ = (ζ · (−22l) mod q) · q−1 mod± 22l. Note that this precomputation would result
in a 2l-bit twiddle factor. Although it would introduce extra cycles for data loading, this
overhead can be offset by the improvements brought by the improved Plantard arithmetic.

Algorithm 14 illustrates the detailed instruction sequence of the double CT butterfly,
which computes a = (atop+btopζ)||(abottom+bbottomζ), b = (atop−btopζ)||(abottom−bbottomζ)
over packed arguments a, b. Thanks to the SIMD instruction smulw{b,t}, one can pack
two 16-bit coefficients into one 32-bit register b. Then, one can perform the Plantard
multiplication (Algorithm 11) by a proper twiddle factor ζ over the top and bottom half
of b using the smulwt and smulwb instructions, respectively. The follow-up instruction
sequence is the same as the previous work [ABCG20]. In summary, we obtain a 7-instruction
double CT butterfly for packed arguments, which reduces 2 instructions compared with
the one that uses Montgomery multiplication. Similarly, we can also obtain a 7-instruction
double GS butterfly for INTT.

4.2.2 Layer Merging

As stated in Subsubsection 4.2.1, using the improved Plantard arithmetic will double
the size of the twiddle factors. It would bring extra load instructions to load the 32-bit
twiddle factors compared with the original 16-bit version. However, the improvements
brought by the improved Plantard arithmetic can easily bury this overhead thanks to
the layer merging techniques. There are two efficient layer merging strategies for Kyber
on Cortex-M4, which are presented in [ABCG20] and [AHKS22], respectively. The layer
merging strategy in [ABCG20] is the 3-layer merging strategy (3-3-1), while [AHKS22]
adopts the 4-layer merging strategy (4-3). Since the first 4-layer NTT re-uses the same 15
twiddle factors multiple times, [AHKS22] proposes to cache the 15 16-bit twiddle factors
into 8 FP registers and replace the memory access instruction with the cheaper vmov
instruction. Apart from using the FP registers and the vmov instruction, the 4-layer
merging strategy is actually built upon the 3-layer merging strategy in [ABCG20].

The 3-layer merging strategy in [ABCG20] allows us to compute 8 butterflies at the cost
of loading 1, 2, or 4 32-bit twiddle factor(s) in each layer. Note that loading 2 consecutive
32-bit twiddle factors can be achieved by a 3-cycle ldrd instruction on Cortex-M4, which is
merely 1-cycle slower than the original ldr instruction to load 2 consecutive 16-bit twiddle
factors. We rearrange the twiddle factors in the same order as they are used so that one
can use ldrd to load 2 consecutive 32-bit twiddle factors. Overall, by integrating the
Plantard arithmetic into the 3-layer merging strategy, one could reduce 8 cycles (reduce 1
cycle for each butterfly) with 0, 1, or 2 extra cycle(s) to load the 32-bit twiddle factors
in each layer. For the 8 butterflies that only require 1 twiddle factor, one could reduce 8
cycles at no extra cost since ldr has the same cost as ldrh.

As for the 4-layer merging strategy, due to the double size of the twiddle factors, one
needs to load 15 twiddle factors into 15 FP registers with the vldm instruction. Compared
with 8 FP registers in the original design, our design consumes 7 extra cycles. Besides,
during each iteration of the first 4 layers, one needs 7 extra vmov instructions to retrieve
the twiddle factors from the FP registers to general registers. This extra cycle consumption
can be totally covered by the cycle reduction brought by the improved Plantard arithmetic.

In order to reveal the actual effect brought by the improved modular arithmetic in our
implementation, both 3-layer and 4-layer merging strategies are used in Kyber, while the
better 4-layer merging strategy is adopted in NTTRU. Besides, for the implementation
of NTTRU and Kyber with the 3-layer merging strategy, we use CT butterflies in NTT
and GS butterflies in INTT. As for the Kyber implementation with the 4-layer merging
strategy, the CT butterflies are adopted in both NTT and INTT, similar to [AHKS22].
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4.2.3 Lazy Reduction

To better illustrate the improvements the improved Plantard arithmetic brings to both
CT and GS butterflies, we only discuss the lazy reduction strategies for the NTT with
CT butterflies and INTT with GS butterflies here. When Montgomery arithmetic is
applied to NTT and INTT, all of the coefficients will grow by q after each layer of NTT,
while half of the coefficients will double after each layer of INTT. The well-known lazy
reduction technique can minimize the number of modular reductions in NTT/INTT, which
is mainly determined by the input range of the modular multiplication. Compared with
the Montgomery arithmetic, the output range of the improved Plantard arithmetic is
halved, while the input range of the improved Plantard reduction (Algorithm 13) is about
2α times larger than Montgomery reduction (i.e., the reduction version Algorithm 12).
Therefore, applying the improved Plantard arithmetic in NTT/INTT can halve/decrease
the growing rate of coefficients compared with the one that uses Montgomery arithmetic,
thus enabling better lazy reduction strategies.
CT Butterfly. Specifically, for the modulus q = 3329 (9q < 2l−1 < 10q) in Kyber, the
forward NTT has 7 layers of butterflies. Therefore, the 7 layers of butterflies that use
Montgomery multiplication will expand all of the 256 coefficients by 7q. Therefore, at
least one modular reduction is required to reduce the 256 coefficients to perform the
follow-up base multiplication. On the contrary, when applying Plantard multiplication,
the coefficients only grow by 3.5q in 7 layers. Since the inputs of NTT are always smaller
than q, 4.5q lies in the modular multiplication input range [−q2α, q2α] of Kyber (α=3 for
Kyber). Therefore, the output coefficients of NTT with Plantard multiplication can be
directly used in the base multiplication without modular reduction.

It should be noted that the coefficient expansion would have a bigger effect on schemes
with bigger modulus like NewHope [ADPS16] and NTTRU [LS19]. As for the modulus
q = 7681 (4q < 2l−1 < 5q) in NTTRU, all of the 768 coefficients need one modular
reduction after every three layers of butterflies when Montgomery multiplication is used.
Since the forward NTT in NTTRU has 8 layers of butterflies, we need two modular
reductions after the third and sixth layers of butterflies. The last two layers of butterflies
will produce coefficients smaller than 3q. These coefficients cannot be directly used in
Montgomery multiplication because (3q)2 = 9q2, which is out of the input range of q2l−1.
Therefore, the forward NTT implemented with Montgomery arithmetic in NTTRU needs
three modular reductions for 768 coefficients. However, when using the improved Plantard
multiplication in NTTRU, we only need one modular reduction for 768 coefficients after
the seventh-layer butterflies. The final layer of butterflies only expand the coefficients up to
1q, which lies in the input range of [−q2α, q2α] (α = 2 for NTTRU), and these coefficients
can be directly used in the base multiplication. In sum, two modular reductions for 768
coefficients are saved compared with the implementation that uses Montgomery arithmetic,
which fully illustrates the benefits of a larger input range and smaller output range of our
method.
GS Butterfly. As for the INTT with GS butterflies in Kyber, the advantages of applying
the Plantard arithmetic are twofold. First, the maximum input value of INTT is halved
after the matrix-vector multiplication (i.e., Step 6 of Algorithm 2). If one uses Montgomery
arithmetic in the matrix-vector multiplication, the coefficients produced in this process
would be smaller than 2q, 3q, and 4q for Kyber512, Kyber768, and Kyber1024, respectively.
Therefore, one modular reduction of coefficients is required after the first and second layers
of butterflies in INTT for Kyber768/Kyber1024 and Kyber512, respectively. In our case,
the modular reduction will have a one-layer delay since the matrix-vector multiplication
generates coefficients smaller than 1q, 1.5q, and 2q. Second, since the maximum value of
the reduced coefficient is 0.5q after each modular reduction, 4 layers of butterflies can be
conducted over the reduced coefficients instead of 3 when using Montgomery’s method.
After the second-layer butterflies of Kyber768/Kyber1024, the modular reduction is applied
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Algorithm 15 Double Plantard reduction for packed coefficients
Input: A 32-bit packed integers a = atop||abottom where atop, abottom are two 16-bit signed

coefficients
Output: r = (atop mod± q)||(abottom mod± q), −q/2 < rtop, rbottom < q/2

1: const ← (−22l mod q) · (q−1 mod± 22l) mod± 22l . precomputed
2: smulwb t, const, a
3: smulwt a, const, a
4: smlabt t, t, q, q2α
5: smlabt a, a, q, q2α
6: pkhtb r, a, t, asr#16
7: return r

for all of the 128 coefficients; then all coefficients have a maximum value of 0.5q. The
third-layer butterflies have a step size of 8, and the first 8 coefficients (a0 ∼ a7) will first
grow to 8q after the sixth-layer butterflies. The final-layer butterflies have a step size of
128. Two sets of 8 coefficients (a0 ∼ a7, a128 ∼ a135) have a maximum value of 8q, while
the rest of the coefficients are smaller than 4q. Therefore, we only need to perform modular
reduction on these 16 coefficients instead of all of the 128 coefficients in previous reports,
and other coefficients will be naturally reduced by the modular multiplication with the
twiddle factors and 128−1 in the final-layer butterflies.

The GS butterflies are also adopted for the INTT in NTTRU. The optimization brought
by our method is similar to the INTT in Kyber, except that the modular reduction for half
of the coefficients is required after every 3 layers of butterflies with Plantard arithmetic
instead of 2 when using Montgomery arithmetic. Thus, only 2 modular reductions for 384
coefficients are required after the third and sixth layers of butterflies.

4.2.4 Double Plantard Reduction for Packed Coefficients

The modular reduction of coefficients is necessary if the next operation in NTT/INTT
would cause an overflow. Previous work [ABCG20] uses double Montgomery reduction or
double Barrett reduction (i.e., Algorithm 10 and Algorithm 8 in [ABCG20]) to reduce two
packed coefficients on Cortex-M4, which consume 7 cycles and 8 cycles, respectively. The
double Barrett reduction in [ABCG20, Algorithm 8] requires two explicit shift operations
for packed coefficients. Recent work further reduces its cycle counts down to 6 cycles by
eliminating two explicit shift operations using the smlawb and smlawt instructions (see
[AHKS22, Algorithm 3.2]). In this work, an even better 5-cycle double Plantard reduction
is proposed and shown in Algorithm 15. This algorithm is based on the fact that the
Plantard reduction over a 16-bit signed integer can be viewed as a Plantard multiplication
by a constant −22l mod q. And one can multiply q−1 by the constant −22l mod q to obtain
a precomputed constant, thus saving one multiplication by q−1. Note that the input range
of Algorithm 15 is the same as Algorithm 11. Since Algorithm 15 generates signed output
in (− q2 ,

q
2 ), this algorithm is only applicable inside NTT/INTT. The Barrett reduction is

still required outside NTT/INTT to obtain a positive result.

4.3 Extensibility on Other Platforms and Schemes
The efficiency of the Plantard arithmetic for 16-bit moduli relies on the smulw{b,t}
instruction to perform the 16 × 32-bit multiplication on Cortex-M4. The 16 × 32-bit
multiplication would make it difficult to apply the Plantard arithmetic to architectures like
AVX2 and NEON. However, the proposed optimizations for 16-bit NTT are not limited
to Cortex-M4 but can also be extended to Cortex-M7 as both of the devices share the
same SIMD extensions [Lor16]. Moreover, the Plantard arithmetic for 16-bit moduli may
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Algorithm 16 The improved Plantard multiplication by a constant on RISC-V
Input: A 32-bit signed integer a ∈ [−q22α, q22α], a precomputed 2l-bit integer bq′ where

b is a constant, q′ = q−1 mod± 22l

Output: r = ab(−2−2l) mod± q, r ∈ (− q2 ,
q
2 )

1: bq′ ← bq−1 mod± 22l . precomputed
2: mul r, a, bq′ . r ← [abq′]2l
3: srai r, r,#16 . r ← [[abq′]2l]l
4: mul r, r, q
5: add r, r, q2α . r ← q[[abq′]2l]l + q2α
6: srai r, r,#16 . r ← [q[[abq′]2l]l + q2α]l
7: return r

still outperform the Montgomery and Barrett arithmetic on some 32-bit microcontrollers
without such powerful SIMD extensions as Cortex-M4/M7. Take the SiFive Freedom
E310 microcontroller [SiF], equipped with a 32-bit E31 RISC-V core, as an example. The
instruction sequence of Algorithm 11 on RISC-V is shown in Algorithm 16. Here, the
16 × 32-bit multiplication is directly implemented with the 32 × 32-bit multiplication
instruction, and the result locates in the top half of r. One extra shift operation is required
to shift it down to the bottom half for the follow-up operations. Compared with its
Montgomery and Barrett counterparts [Gre20, Listing 5.2.10] on RISC-V, the improved
Plantard multiplication by a constant reduces one multiplication instruction (the intrinsic
advantage of the Plantard arithmetic) and introduces an extra shift instruction. On the
SiFive Freedom E310 microcontroller, one multiplication instruction costs 5 cycles while
one shift instruction costs 1 cycle [SiF]. Therefore, the improved Plantard arithmetic is
better than its Montgomery and Barrett counterparts on this platform. Similarly, for other
32-bit microcontrollers without SIMD instruction, our method for 16-bit moduli would
still outperform its Montgomery and Barrett counterparts if multiplication instruction is
slower than the shift instruction.

Similar analysis results can be obtained on the Plantard arithmetic for 32-bit moduli.
The improved Plantard arithmetic would still outperform its Montgomery and Barrett
counterparts if the target platform provides native 32× 64-bit or 64× 64-bit multiplication
instructions, and the multiplication instruction is slower than the shift instruction. In this
work, we only focus on accelerating Kyber and NTTRU with 16-bit NTT on Cortex-M4.
We leave the exploration of Plantard arithmetic’s practical applications on various schemes
and platforms as future work.

5 Results and Comparisons
5.1 Benchmarking Setup
The benchmarking results are obtained on STM32F407G-DISC1 with the STM32F407VGT6
MCU. The board is equipped with 1MiB of flash memory and 192 KiB of RAM. The
benchmarking setup can refer to pqm4 [KRSS], and the microcontroller is clocked at 24
MHz to avoid wait states during memory operations as recommended in pqm4. The compile
tool is arm-non-eabi-gcc version 10.2.1, and we compile our code with -flto and -O3 options,
which are the same as [ABCG20] and [AHKS22]. The Keccak implementation is token
from pqm4, and the hardware random number generator (RNG) of the microcontroller is
used in our implementation.

The proposed Kyber implementation is initially built upon the pqm4 code, which
consists of the optimizations presented in [ABCG20, BKS19]. Later work [AHKS22]
presents a faster Kyber implementation, including a high-speed and stack-friendly version.
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Table 1: Cycle counts for the core polynomial arithmetic in Kyber and NTTRU on
Cortex-M4, i.e., NTT, INTT, base multiplication, and base inversion.

Scheme Implementation NTT INTT Base Mult Base Inv

Kyber

[ABCG20] 6 822 6 951 2 291 -
This worka 5 441 5 775 2 421 -
Speed-up 20.24% 16.92% -5.67% -

Stack[AHKS22] 5 967 5 917 2 293 -
Speed[AHKS22] 5 967 5 471 1 202 -

This workb 4 474 4 684/4 819/4 854 2 422 -
Speed-up (stack) 25.02% 20.84%/18.56%/17.97% -5.58% -
Speed-up (speed) 25.02% 14.38%/11.92%/11.28% -101.41% -

NTTRU
[LS19] 102 881 97 986 44 703 100 249

This work 17 274 20 931 10 550 40 763
Speed-up 83.21% 78.64% 76.40% 59.34%

a Implementation based on [ABCG20], b Implementation based on the stack-friendly code of [AHKS22].

Although their high-speed Kyber implementation has better efficiency, their stack usage is
almost doubled. We integrate the improved Plantard arithmetic into their stack-friendly
implementation to benchmark the speed performance of Kyber. The proposed NTTRU
implementation is based on the reference code [LS19] that uses the symmetric primitives
from OpenSSL. To immigrate its reference code to Cortex-M4, we use the SHA2 and AES
implementations in pqm4, which are based on the work in [AP21].

5.2 Performance of the Polynomial Arithmetic
The cycle counts of the core polynomial arithmetic in Kyber and NTTRU are presented in
Table 1. Using the improved Plantard arithmetic, the proposed Kyber implementation
based on [ABCG20] achieves 20.24% and 16.92% speed-ups for NTT and INTT, respectively.
The speed-optimized implementation of [AHKS22] trades the speed with extra stack usage
while implementing the matrix-vector multiplication and base multiplication, which explains
their two times faster base multiplication. Besides, the coefficients of their matrix-vector
multiplication lie in [−q, q], which reduces one modular reduction of 128 coefficients at the
beginning of their INTT implementation. On the contrary, the matrix-vector multiplication
of their stack-friendly implementation produces coefficients smaller than kq, which requires
extra modular reductions in INTT and results in a slower INTT implementation.

After applying the improved Plantard arithmetic in their stack-friendly implementation,
we halve the coefficient size of the matrix-vector multiplication down to 1

2kq; then, three
different lazy reduction strategies are adopted for the INTT in Kyber512, Kyber768,
and Kyber1024, respectively. Overall, the proposed implementation based on the stack-
friendly code of [AHKS22] achieves 25.02% speed-up for NTT and 20.84%/18.56%/17.97%
speed-ups for the INTT in Kyber512/Kyber768/Kyber1024, respectively. Our INTT
implementation is also 14.38%/11.92%/11.28% faster than their speed-optimized INTT
implementation in Kyber512/Kyber768/Kyber1024, respectively. All these speed-ups
mainly come from the efficient Plantard multiplication by a constant and better lazy
reduction strategies. The results clearly reveal the improved Plantard arithmetic’s benefits
to the NTT/INTT on Cortex-M4. The base multiplication of Kyber consists of modular
multiplication by a constant and modular multiplication of two variables, which increases
the register usage pressure and requires extra cycles to handle this problem.

The polynomial arithmetic implementation of NTTRU is similar to Kyber. By fully
utilizing the SIMD instructions, the double butterflies, double modular reduction over
packed coefficients, double base multiplication, and double base inversion are first presented
by applying the improved Plantard arithmetic. The assembly implementation of NTTRU
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obtains excellent speed-ups compared with its reference implementation in [LS19]. Table 1
shows that the speed-ups for NTT, INTT, base multiplication, and base inversion are
83.21%, 78.64%, 76.40%, and 59.34%, respectively. The speed-ups for NTT and INTT
mainly come from the efficient Plantard multiplication by a constant, better lazy reduction
techniques, and parallel implementation utilizing the SIMD instructions on Cortex-M4. The
speed-up for base inversion is relatively smaller than others because most of the modular
multiplications in this operation are implemented as the modular multiplications of two
variables. Therefore, the efficient Plantard multiplication by a constant (Algorithm 11)
can not be applied to base inversion.

5.3 Performance of Schemes

Table 2 shows the cycle counts and stack usage of the KEM protocols, namely key
generation (KeyGen), encapsulation (Encaps), and decapsulation (Decaps). The Kyber
implementation based on either [ABCG20] or the stack-friendly code of [AHKS22] achieves
better speed performance than its Montgomery-based counterpart with the same stack
usage. For the Kyber implementation based on [ABCG20], the speed-ups for KeyGen,
Encaps, and Decaps are 1.27%-1.76%, 0.73%-1.09%, and 1.32%-1.78%, respectively. As for
the Kyber implementation based on the stack-friendly code in [AHKS22], we achieve speed-
ups of 1.76%-2.09%, 1.13%-1.50%, and 1.78%-2.48% for KeyGen, Encaps, and Decaps,
respectively. It is worth noting that our implementation based on the stack-friendly
version of [AHKS22] outperforms their high-speed version with approximately half of the
stack. If the stack usage is not one of the primary improved goals, one can also integrate
the improved Plantard arithmetic into their speed-optimized implementation for better
efficiency. As stated in previous work [KRSS19], the dominance of the hashing functions of
Kyber will reduce the overall effect of the optimized polynomial arithmetic, which explains
the relatively small speed-ups for the KEM protocols of Kyber.

As the first assembly NTTRU implementation on Cortex-M4, we obtain 49.24%, 45.01%,
and 54.56% speed-ups for KeyGen, Encaps, and Decaps compared with its reference
implementation. The excellent speed-ups mainly come from the highly optimized assembly
implementation of NTT, INTT, base multiplication, and base inversion implemented with
the improved Plantard arithmetic. It is obvious that NTTRU outperforms every variant
of Kyber by a large margin in terms of speed on Cortex-M4. Compared with the fastest
Kyber512, NTTRU provides 37.91%, 55.03%, 46.19% faster KeyGen, Encaps, and Decaps
with approximately 3.45∼4.05 times larger stack usage, respectively. In sum, although it
is not a candidate for the NIST PQC competition, its efficiency might make it suitable for
some specific application scenarios or platforms.
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Table 2: Cycle counts (cc) and stack usage (Bytes) for KeyGen, Encaps, and Decaps on
Cortex-M4. k is the dimension of the underlying Module-LWE problem for Kyber. The
first row of each entry indicates the cycle count and the second row refers to stack usage.

Scheme Implementation KeyGen Encaps Decaps
k = 2 k = 3 k = 4 k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

Kyber

[ABCG20] 454k 741k 1 177k 548k 893k 1 367k 506k 832k 1 287k
2 464 2 696 3 584 2 168 2 640 3 208 2 184 2 656 3 224

This worka 446k 729k 1 162k 542k 885k 1 357k 497k 818k 1 270k
2 464 2 696 3 584 2 168 2 640 3 208 2 184 2 656 3 224

Stack[AHKS22] 439k 717k 1 139k 534k 871k 1 329k 484k 797k 1 233k
2 608 3 056 3 576 2 160 2 660 3 236 2 176 2 676 3 252

Speed[AHKS22] 438k 711k 1 129k 531k 864k 1 316k 479k 787k 1 217k
4 268 6 732 7 748 5 252 6 284 7 292 5 260 6 308 7 300

This workb 430k 702k 1 119k 526k 861k 1 314k 472k 780k 1 211k
2 608 3 056 3 576 2 160 2 660 3 236 2 176 2 676 3 252

NTTRU
[LS19] 526k 431k 559k

9 384 8 748 10 324

This work 267k 237k 254k
9 372 7 452 8 816

a Implementation based on [ABCG20], b Implementation based on the stack-friendly code of [AHKS22].
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