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Abstract—Kyber, an IND-CCA-secure key encapsulation
mechanism (KEM) based on the MLWE problem, has been
shortlisted for the third round evaluation of the NIST Post-
Quantum Cryptography Standardization. In this paper, we
explored the optimizations of Kyber in high-performance pro-
cessors from the ARM Cortex-A series, which are widely used
in mainstream mobile phones. To improve the performance of
Kyber, we utilized the powerful SIMD instruction set NEON
in an ARMv8-A to parallelize the core modules of Kyber, i.e.,
modular reduction and NTT. Specifically, we specially designed
the optimized implementation based on the characteristic of
the NEON instruction set for the Barrett and Montgomery
reduction algorithms. To make full use of the computing
power of NEON instructions, we proposed a novel strategy
for computing the 16-bit Barrett reduction without handling
the 32-bit intermediate result. Our Barrett and Montgomery
reduction showed 8.52 and 8.89 times faster than the reference
implementation. As for NTT/INTT, we adopted the 2+5 layer
merging strategy on an ARMv8-A to implement NTT/INTT
after carefully analyzing the register occupancy of various
layer merging techniques. Thanks to the selected layer merging
strategy, our NTT and INTT achieved 11.89 and 13.45 times
speedups compared with the reference implementation. Our
optimized software achieved 1.77×, 1.85×, and 2.16× speedups
for key generation, encapsulation, and decapsulation compared
with Kyber’s reference implementation.

Keywords-Lattice-based Cryptography; Module-LWE; Mod-
ular Reduction; NTT; Kyber;

I. INTRODUCTION

Quantum computing’s, as one of the most advanced tech-
nologies in the modern world, supremacy has been firmly
proven by recent research on quantum computers [1], [2],
and officially available quantum computers are expected to
be formally developed in the next few decades. Although
its appearance will definitely bring many conveniences in
many aspects, its development will also bring subversive
changes to traditional computers and other electrical devices.
Shor’s algorithm [3] on a quantum computer can resolve
the integer factorization problem in polynomial time, which
underpins the current Public Key Cryptography (PKC), i.e.,
RSA, ElGamal, and Elliptic Curve Cryptography (ECC),
thus raising significant concerns on the security of PKC once
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quantum computers have been officially developed. It is very
important to develop novel types of PKC to secure massive
data in the real world.

As a substitute for the traditional PKC, Post-Quantum
Cryptography (PQC) is considered to be a secure PKC
scheme that can resist the threat of the quantum computer.
Currently, the NIST PQC standardization process is at its
final round of competition. Seven finalists were selected
to the final round in July 2020. Among all the seven
finalists, five schemes are constructed upon the hardness of
the lattice problem, i.e., Lattice-based Cryptography (LBC),
which makes LBC the most promising type of scheme that
would be selected as the formal PQC standard. Kyber [4], as
one of the Key Encapsulation Mechanism (KEM) finalists,
is one of the LBC schemes. More specifically, Kyber is
constructed upon the hardness of the Module Learning-with-
Errors (MLWE) problem. The module version LWE problem
is a compromise problem of the LWE and Ring-LWE prob-
lem. By introducing a small l-dimensional matrix, Kyber
not only has higher security than Ring-LWE-based schemes,
i.e., NewHope [5], but also has better efficiency than LWE-
based schemes, i.e., Classic McEliece [6]. Besides, the
underlying operations, such as polynomial multiplication,
Barrett reduction, and Montgomery reduction, can be reused
for all parameter sets of Kyber, which gives Kyber excellent
scalability. These advantages are essential factors for Kyber
to become a finalist in the NIST PQC standardization.

Most of the current application scenarios use the tra-
ditional PKC as security tools. The ARM Application-
profile [7] (A-profile) architecture has been widely applied to
many high-performance application scenarios, such as PCs,
mobile phones, gaming, and even supercomputing. When the
quantum computer comes into reality, these applications will
face significant challenges on their data security. Therefore,
it is of great significance to deploy PQC, especially one of
the finalists, Kyber, in ARM A-profile architecture to protect
the data in these markets against the threat of quantum
computers in the near future. ARMv8-A [8] is one of
the latest 64-bit ARM A-profile architectures. As one of
the most popular high-performance architectures, ARMv8-
A supports both 64-bit and 128-bit NEON Single Instruc-



tion Multiple Data (SIMD) instruction sets [8]. The 128-
bit NEON instruction set can simultaneously perform four
32-bit vector operations or eight 16-bit vector operations,
which provides excellent computing power to accelerate
cryptography in cryptographic engineering. However, the
ARMv8-A architecture only provides 32 128-bit registers,
i.e., register v0-v31. The limited register resources make it
necessary to allocate registers reasonably to obtain perfor-
mance improvements.

In this paper, we note that the underlying polynomial
coefficients of Kyber can be stored within a 16-bit word,
and most of the operations of the coefficients are irrelevant.
Therefore, we aim at the ARMv8-A architecture and utilize
the excellent computing power of the NEON SIMD instruc-
tion set to accelerate Kyber. Our contributions are threefold.

1) We specially designed the optimal implementation
based on the characteristic of the NEON instruction set
for Barrett and Montgomery reduction algorithms. We
proposed a novel strategy for computing 16-bit Barrett
reduction without handling the 32-bit intermediate
result. Our proposed strategy dramatically improves
the utilization of the computing power of the NEON
instruction set, thus contributing to the 8.52 times
faster Barrett reduction. As for Montgomery reduction,
we made full use of the uzp2 instruction to combine
and reduce two Montgomery results efficiently.

2) To reduce the expensive load/store instructions and
fully utilize the avaliable NEON vector registers, we
carefully analyzed the register occupancy of various
layer merging techniques when implemented NTT
with the NEON instruction set. We adopted the op-
timal 2+5 layer merging strategy on ARMv8-A to
implement NTT. Our NTT and INTT implementa-
tions outperform Kyber’s reference implementation by
11.89× and 13.45×, respectively.

3) We provided a compact and full parameter implemen-
tation for Kyber. Our optimized implementation of
Kyber achieved 1.77, 1.85, and 2.16 times faster than
Kyber’s reference implementation on ARMv8-A.

II. BACKGROUND AND RELATED WORK

A. Kyber Scheme

The security of the Kyber [4] scheme is based on the
MLWE problem [9]. Different from Ring-LWE, MLWE
computes on polynomial matrices and vectors. The basis
of the Kyber scheme is an IND-CPA-secure public-key
encryption scheme (Kyber.CPAPKE), and the IND-CCA2-
secure key-encapsulation mechanism (Kyber.CCAKEM) is
constructed by a slightly tweaked Fujisaki–Okamoto (FO)
transformation [10]. Key generation, encryption, and decryp-
tion functions of Kyber.CPAPKE are described in Algorithm
1, 2, and 3 from a high-level perspective, and we refer
readers to [4] for more details about Kyber.CCAKEM.

Algorithm 1 Kyber.CPAPKE.KeyGen [11]

1: ρ, σ
$←− {0, 1}256 × {0, 1}256

2: Â ∈ Rk×kq ← SampleUniform (ρ)
3: s, e ∈ Rkq ← SampleCBD(σ)

4: t̂← Â ◦NTT(s) + NTT(e)
5: return pk = (ρ, t̂), sk = ŝ

Algorithm 2 Kyber.CPAPKE.Enc [11]

Require: Public key pk = (ρ, t̂)
Require: Message m ∈ Rq
Require: Random coins r ∈ {0, 1}256
Ensure: Ciphertext (u′, v′)

1: Â ∈ Rk×kq ← SampleUniform (ρ)
2: r, e1 ∈ Rkq ← SampleCBD (r)
3: e2 ∈ Rq ← SampleCBD(r)
4: r̂← NTT(r)
5: u← NTT−1(ÂT ◦ r̂) + e1
6: v ← NTT−1(t̂T ◦ r̂) + e2 +m
7: return (Compress(u),Compress(v))

The most time-consuming computation of Kyber is poly-
nomial multiplication in Rq = Zq(x)/(xn + 1), where
q = 3329, n = 256 for all variants of Kyber. Kyber utilizes
the Number Theoretic Transform (NTT) to speed up its
polynomial multiplication, and its parameters enable a 7-
layer incomplete-NTT.

B. Number Theoretic Transform (NTT)

In order to utilize NTT to speed up polynomial multi-
plication, the q must be a prime number. When q satisfies
q = 1 mod 2n, there exists 2n-th primitive roots of unit, and
the complete-NTT is available. For the Kyber scheme, its q
only satisfies q = 1 mod n, so there exists n-th primitive
roots of unit but not 2n-th primitive roots of unit. Therefore,
the 7-layer incomplete-NTT is available, and the defining
polynomial X256 + 1 can be factored as follows:

X256 + 1 =

127∏
i=0

(X2 − ζ2i+1) =

127∏
i=0

(X2 − ζ2br7(i)+1)

where ζ = 17 is the first 256-th primitive root of unit and
br7(i) is the bit reversal of the unsigned 7-bit integer i =
0, 1, ..., 127. After the NTT transformation, the polynomial
f ∈ Rq is factored into 128 polynomials of degree-1, which
can be represented as(
f mod X2 − ζ2br7(0)+1, . . . , f mod X2 − ζ2br7(127)+1

)
NTT(f) = f̂ = f̂0 + f̂1X + · · ·+ f̂255X

255

with



Algorithm 3 Kyber.CPAPKE.Dec [11]

Require: Secret key sk = ŝ
Require: Compressed ciphertext (u′, v′)
Ensure: Message m ∈ Rq

1: u← Decompress (u′)
2: v ← Decompress (v′)
3: return v −NTT−1(ŝT ◦NTT(u))

Algorithm 4 Signed Montgomery reduction [14]

Require: 0 < q < β
2 odd ,−β2 q ≤ a = a1β + a0 <

β
2 q where 0 ≤ a0 < β, β = 216

Ensure: r′ ≡ β−1a(mod q),−q < r′ < q
1: m← a0q

−1 mod ±β . Only low-limb needed
2: t1 ←

⌊
mq
β

⌋
. Only high-limb needed

3: r′ ← a1 − t1

f̂2i =

127∑
j=0

f2jζ
(2br7(i)+1)j

f̂2i+1 =

127∑
j=0

f2j+1ζ
(2br7(i)+1)j

The coefficient-wise multiplications after NTT are per-
formed over 128 degree-1 polynomials with modulus (X2−
γ), where γ is the specific power of ζ. The polyno-
mial multiplication f · g can be computed using NTT by
NTT−1(NTT(f) � NTT(g)), where NTT−1 is the inverse
transformation of NTT and � is coefficient-wise multiplica-
tion.

C. Modular Reduction

Modular reduction is the core operation when computing
NTT-based polynomial multiplication. Division instruction
is not recommended due to its expensive and nonconstant
time characteristics. The common methods to compute
modular reduction are Montgomery reduction [12], Barrett
reduction [13], and specialized reduction. The specialized
reduction is a tailored method for a specific modulus. Seiler
et al. [14] proposed a modified Montgomery reduction and
Barrett reduction, which are more suitable for vectorized
implementation as described in Algorithms 4 and 5. The
advantage of these two algorithms is that only a low-limb
or high-limb product is needed during the computation. The
intermediate value will not extend to a wider-length data
type. Therefore, they can make fuller use of vector registers
than the original version.

The specialized reduction for the Kyber prime q = 3329
is described in Algorithm 6, which is inspired by the
specialized reduction for q = 7681 in [14]. This method
utilizes the fact that 212 ≡ 29 + 28 − 1 (mod q). The

Algorithm 5 Signed Barrett reduction for one word [14]

Require: 0 ≤ q < β
2 ,−

β
2 ≤ a <

β
2 , β = 216

Ensure: r ≡ a (mod q) with 0 ≤ r ≤ q
1: v ←

⌊
2blog(q)c−1β

q

⌉
2: t←

[
av

2blog(q)c−1β

]
. Only high-limb needed

3: t← tq mod β . Only low-limb needed
4: r ← a− t

Algorithm 6 Specialized reduction for the Kyber prime q =
3329 = 212 − 29 − 28 + 1

Require: −215 ≤ a < 215

Ensure: r ≡ a (mod q), 2q < r < 3q
1: t←

⌊
a
212

⌋
2: u← a mod 212 . a = t · 212 + u
3: r ← t · (29 + 28 − 1) + u . 212 = 29 + 28 − 1

disadvantage is that its result may not be as precise as
the Barrett reduction, which would increase the number of
reductions.

D. Related Work

With the advancement of the NIST PQC standardization
project, there are many works related to the optimized
implementation of PQC schemes.

Botros et al. [11] presented an optimized implementation
of round-2 Kyber on Cortex-M4, and they also gave a
memory-optimized implementation on resource-constrained
devices. Alkim et al. [15] described a rather innovative
optimization for NTT on Cortex-M4. They packed two 16-
bit coefficients into a 32-bit register and utilized the SIMD
instructions achieved faster performance than the previous
implementation. Seiler [14] presented various optimizations
for NTT with AVX2 instructions, and those methods are
adopted by the Kyber scheme. A major contribution of
this work is that the author proposed a modified version
of the Montgomery reduction that is more suitable for
vectorized implementation. This work improved the poly-
nomial multiplication of NewHope and Kyber by a factor
of 4.2 and 6.3 on Skylake, respectively. Streit et al. [16]
implemented NewHope on the ARMv8-A platform using
NEON instructions. Their implementation outperforms the
C reference implementation of NewHope by a factor of 8.3.

Zhang et al. [17] designed an accelerator on a FPGA
platform for polynomial multiplication of LAC, which is
a round-2 candidate of the NIST PQC project. Their accel-
erator can greatly improve the performance of LAC’s poly-
nomial multiplication. It is worth mentioning that they also
designed a specialized reduction for LAC prime q = 251,
and their results showed that this method is very suitable for
FPGA platforms.

Bürstinghaus-Steinbach et al. [18] integrated the Kyber



scheme into mbedTLS, which is a TLS protocol implementa-
tion for embedded devices. Their results showed that Kyber
performs well in mbedTLS compared with ECC variants.

Bos et al. [19] provided first- and high-order masked
implementations for the Kyber scheme. Their masked im-
plementations focused on the one-bit compression operation
and comparing uncompressed masked polynomials with
compressed public polynomials. Their performance results
on an Arm Cortex-M0+ showed that their protection against
side channel attack reduced performance by 2.2 times com-
pared to an unprotected implementation. The work in [20]
provided a high-speed implementation of Kyber on a RISC-
V platform. Besides, there are many other works related to
the optimization of NTT on various platforms, such as [21]–
[25].

III. IMPLEMENTATION DETAILS

As mentioned in Section II-A–II-B, the underlying arith-
metic of Kyber is based on the polynomial ring Rq(x) =
Zq(x)/ (xn + 1), where the elements are polynomials over
the normal domain or the NTT domain. Each polynomial
can be represented as follows:

f =

n−1∑
i=0

fix
i (1)

The polynomial addition and subtraction are performed
component-wise, with the time complexity of O(n). How-
ever, polynomial multiplication is much more complex, with
the time complexity of O(n2). Therefore, NTT is used to
speed up polynomial multiplication, and the time complex-
ity of NTT is O(nlogn). After polynomials f and g are
transformed into the NTT domain, the complex polynomial
multiplication is transformed to point-wise multiplication,
thus reducing its time complexity.

f ∗ g = NTT−1(NTT (f)�NTT (g)) (2)

where � denotes the point-wise multiplication.

A. Barrett Reduction

The Barrett reduction approximately represents 1
q by using

multiplication and shift operations instead of division:

1

q
≈ v

2k
→ v = b2

k

q
e (3)

where be means rounding to the nearest integer. And the
result of the Barrett reduction is computed by:

a mod q = a− ((a ∗ v) >> k) · q (4)

For the Kyber scheme, its parameters involved in Equation
4 are q = 3329, k = 14, and v = 5. Since the input of the
Barrett reduction is a 16-bit integer, the output is an integer
in the range of (−q, q).

Listing 1 Barrett Reduction (BarR)

Input: va.8h = [a0, a1, . . . , a7]
Input: vq.h[0] = q = 3329
Input: vc.8h = 1 << 10
Input: vt1, vt2 is intermediate vector register
Output: va.8h = [a0, a1 . . . , a7]

1: sshr vt1.8h, va.8h, 3 . t1 = a >> 3
2: shl vt2.8h, vt1.8h, 2 . t2 = t1 << 2 = t1 ∗ 4
3: add vt1.8h, vt1.8h, vt2.8h . t1 = t1 ∗ 5
4: add vt1.8h, vt1.8h, vc.8h . t1+ = (1 << 10)
5: sshr vt1.8h, vt1.8h, 11 . t1 = t1 >> 11
6: mls va.8h, vt1.8h, vq.8h . a− = t ∗ q

In Kyber, a and v are 16-bit integers, and the computing
of a ∗ v will produce a 32-bit integer. However, expanding
to double-width type will reduce the utilization of vector
registers in the SIMD instructions. Therefore, we try to
modify the original Barrett reduction to avoid the expansion
of the data width. Inspired by the optimized implementation
of NewHope on ARMv8-A in [16], we propose an improved
Barrett reduction as follows:

a mod q = a− (((a >> 3) ∗ v) >> 11) · q (5)

First of all, the integer a is shifted right by 3 bits to
ensure that the multiplication result of (a >> 3) ∗ v is
within 16-bit. Then, the product multiplied by v is shifted
right by 11 bits to get the approximate quotient of ba/qc.
The error caused by shifting a right ahead of time is
[(1112 = 710) ∗ 5] >> 11 = 0 at most. Therefore, it
doesn’t influence the output range of the result of the
Barrett reduction. In our implementation, the multiplication
(a >> 3) ∗ v doesn’t extend the data type to 32-bit, but
only uses the 16-bit intermediate to make full use of the
bandwidth advantage of the NEON registers, as given in
Listing 1. The combination of line 3 and 4 is to obtain the
rounded quotient value of a/q to ensure that the output range
of the Barrett reduction is between (−q, q).

In Kyber, the addition of polynomial coefficients when
computing INTT (inverse of NTT) is followed by the Barrett
reduction. In the reference implementation of Kyber512,
n = 256, q = 3329, a 7-layer incomplete-INTT is per-
formed. The maximum and minimum of a 16-bit signed
integer are 32767 and -32768, and 9q < 32767 < 10q.
The input range of the INTT is (−q, q), and after finishing
the computation of one layer, the range of coefficients is
doubled. After the third layer of INTT, the range becomes
(−8q, 8q). Therefore, the Barrett reduction is needed for
avoiding overflow from a 16-bit integer. According to the
above analysis, only the third, sixth, and last layers need
performing the Barrett reduction, as shown in Figure 1.

Compared with the Specialized reduction in Section II-C,
our experimental results show that the Specialized reduction



Figure 1: The position of Barrett reduction in the INTT

Listing 2 Montgomery Multiplication (MontM)

Input: va.8h = [a0, a1, . . . , a7]
Input: vb.8h = [b0, b1, . . . , b7]
Input: vt1, vt2 are intermediate vector registers
Output: va1.8h = [a0, a1 . . . , a7]

1: smull vt1.4s, va.4h, vb.4h . t1 = (L)a ∗ b
2: smull2 va.4s, va.8h, vb.8h . va = (H)a ∗ b
3: MontR vt1.4s, va.4s, vt2 . MontR(a ∗ b)

is faster than the Barrett reduction described in Listing 1.
However, the output of the Specialized reduction range
from −2q to 3q. Therefore, it is necessary to perform the
Specialized reduction at the 3, 4, 5, and 6 layers, and
the Barrett reduction is also needed at the last layer to
ensure that the output is within (−q, q). Finally, we adopt
the Barrett reduction instead of the Specialized reduction,
because the later will increase the number of reduction.

B. Montgomery Multiplication and Reduction

Montgomery multiplication is a fast modular multipli-
cation algorithm for computing x · y · β−1 mod q, where
β = 216 in our implementation.

As described in Listing 2, our Montgomery multiplication
can compute eight 16-bit multiplication in parallel, i.e.,
a0 · b0, a1 · b1, ..., a7 · b7, and eight 32-bit results are stored
into two NEON registers. Next, Montgomery reduction
(Listing 3) is used to reduce these eight 32-bit integers
to eight 16-bit integers, which are finally stored into a
NEON register. The right shift by 16 bits operation in line
2 of Algorithm 4, that is, taking the upper 16-bit part of
the 32-bit operand, can be replaced by the uzp2 (Unzip
vectors (secondary)) instruction in line 7 of Listing 3. This
instruction reads the corresponding odd vector elements
from two source registers, puts the results of the first source
register into the continuous position of the lower half of the
vector, puts the results of the second source register into
the continuous position of the upper half of the vector, and
writes the vector into the destination register. By using the
uzp2 instruction, operations of shifting and merging into one
register be implemented in one step, thus reducing the time
consumption.

Listing 3 Montgomery Reduction (MontR)

Input: va1.4s = [a0, a1, . . . , a3]
Input: va2.4s = [a4, a5, . . . , a7]
Input: vq = q = 3329
Input: vr.4s = [216 − 1, . . . , 216 − 1]
Input: vqp = q−1 = 62209
Input: vt is intermediate vector register
Output: va1.8h = [a0, a1 . . . , a7]

1: mul vt.4s, va1.4s, vqp . t = a1 ∗ q−1
2: and vt.16b, vt.16b, vr.16b . t = (LSB)t
3: mls va1.4s, vt.4s, vq . a1− = t ∗ q
4: mul vt.4s, va2.4s, vqp . t = a2 ∗ q−1
5: and vt.16b, vt.16b, vr.16b . t = (LSB)t
6: mls va2.4s, vt.4s, vq . a2− = t ∗ q
7: uzp2 va1.8h, va1.8h, va2.8h . a1 = (MSB)(a1, a2)

(a) Cooley-Tukey(CT) (b) Gentleman-Sande(GS)

Figure 2: Butterfly unit

In the comments of the listings, L/H refers to the low/high
four elements of a NEON register, and LSB/MSB refers to
the least/most significant 16-bit of a 32-bit integer, respec-
tively.

C. NTT Implementation

NTT and INTT are the most time-consuming modules,
and their basic operation is a butterfly unit. There are two
types of butterfly units, Cooley-Tukey(CT) and Gentleman-
Sande(GS). The basic step of CT is shown in Figure 2a.
Polynomial coefficients a and b are transformed into a+γ ·b
and a− γ · b by the CT butterfly unit, where γ is a specific
power of ζ. The basic operation of the GS-butterfly unit
is shown in Figure 2b. Polynomial coefficients a and b are
transformed into a + b and (a− b) · γ by the GS-butterfly
unit.

The main difference between the CT and GS butterfly
units lies in the order of input and output. The input of the
CT butterfly unit is in normal order, and the output is in
bit-reverse order, while the GS butterfly unit is the opposite.
In our implementation, the NTT uses the CT butterfly unit
and the INTT uses the GS butterfly unit. In this way, the
bit-reverse outputs of NTT are fed to INTT, so there is no
need to adjust the order of coefficients before performing
INTT. As for the optimized implementation of NewHope in
[16], both NTT and INTT adopt the GS butterfly unit. The
advantage of their method is that the NTT and INTT can
use the same code, and the disadvantage is that they need to



manually adjust the order of inputs to bit-reverse the order
before performing NTT and INTT.

When computing NTT, the polynomial coefficients of
each layer need to be loaded and stored. There are 2n

coefficients for the n-layer NTT that will be loaded and
stored 2n ∗ 2n times in total, and these memory access
will consumes a lot of execution time. Therefore, the layer
merging technique is used to reduce the number of load
and store instructions to 2 ∗ 2n, thereby improving the
performance. Figure 3 describes a 3-layer incomplete-NTT
for n = 16, the layer merging technique loads 16 coefficients
and 8 constants to registers at one time, and then performs
the 3-layer merging. In the end, these results are stored in
memory.

For Kyber, n = 256, and there only exists 256-th primitive
roots of unit. Therefore, the 7-layer incomplete-NTT is avail-
able. There are 32 128-bit registers in the NEON engine. If
each register is configured as 8 × 16-bit, all registers can
accommodate 256 16-bit values. The 7-layer incomplete-
NTT of Kyber has various layer merging strategies, such
as 1+6, 2+5, 3+4 layer merging. We can achieve a 6-layer
merging at most, and its calculation involves 128 coefficients
and 64 twiddle factors (ζ), with 16 + 8 = 24 registers
needed. Besides, the intermediate results of calculation also
occupy extra registers. For example, line 1–2 in Listing 2
needs to expand the data type to store the multiplication
results. When computing the 6-layer merging, Montgomery
multiplications are calculated 32 times in the last layer, and
32 32-bit results will be stored into 8 128-bit registers. At
this time, all 32 NEON registers are occupied, and there are
no extra registers to store necessary constants (q, q−1...).
Hence 32 registers are not enough for the 6-layer merging.
As a result, the 5-layer merging is more appropriate because
we have enough registers to accommodate all 64 coefficients
and 32 constants.

Therefore, we adopt a 2+5 layer merging strategy. When
computing the first 2-layer merging, every 4 coefficients with
a span of 256/(22) = 64 are combined as a group. In the
last five layers, the 256 coefficients are divided into four
blocks in sequence, and 64 coefficients of each block take
the 5-layer merging.

In addition, we need to pay attention to the order of
twiddle factors. The first two layers only use three twiddle
factors, so the operation is relatively simple. After comput-
ing the first two layers, 256 coefficients are divided into four
blocks, and we merge five layers of each block respectively.
And it is necessary to adjust the order of twiddle factors to
match the order of the layer merging.

IV. PERFORMANCE EVALUATION AND COMPARISON

In this section, we present the performance comparison
of our optimized implementation with Kyber’s reference
implementation. Our target platform is Raspberry Pi 3 with
an ARM Cortex-A53 processor. The operating system is

Module ref Our work ref / Our work
BarR 2675 314 8.52

MontR 3413 384 8.89
NTT 16575 1394 11.89
INTT 27284 2028 13.45

Table I: Performance and Comparison of kyber512

Schemes ref Our work ref / Our work

Kyber512
K 464238 262249 1.77
E 637189 343538 1.85
D 791471 367236 2.16

Kyber768
K 807544 484745 1.67
E 1030702 594449 1.73
D 1274856 641491 1.99

Kyber1024
K 1189371 783209 1.52
E 1491847 930112 1.60
D 1727240 1011992 1.71

Table II: Performance and Comparison of KEM

Ubuntu 5.4.0-1034-raspi and the GCC version is 7.5.0.
Results shown in Table I and Table II are median values
for 10,000 tests.

The pure C implementation of Kyber was provided in
[26]. We summarized the results of the comparison in
Table I and Table II. The column ref/Our work represents
the speed-up of the NEON implementation over the pure C
implementation.

Table I only shows the results of an important optimized
module in Kyber512, because there are similar performance
improvements for Kyber768, and Kyber1024. Compared
with pure C implementations, the speed-ups of ref vs. Our
work are reported for the modular reduction and NTT in
Table I. These speed-ups are 8.52 and 8.89 for Barrett re-
duction and Montgomery reduction, respectively. Regarding
NTT, speed-ups are 11.89 and 13.45 for NTT and INTT,
respectively.

The speed-up of the overall scheme is shown in Table
II. The key encapsulation mechanism (KEM) in Kyber has
different reference implementations of three parameter sets.
Kyber512, Kyber768, and Kyber1024 correspond to k=2, 3,
and 4, respectively, and k is the dimension of the matrix
of polynomials, which is the main mechanism in Kyber to
scale security to different levels.

For key generation, the speed-ups vary in the range of
1.52-1.77 for Kyber. For encapsulation and decapsulation,
the corresponding speed-ups vary in the range of 1.60-1.85
and 1.71-2.16 for Kyber. All speed-ups are substantially
higher than for the entire implementation of Kyber.

V. CONCLUSION

This paper presented several optimized techniques to effi-
ciently implement Kyber.KEM on an ARMv8. We proposed
optimizations for modular reduction of Kyber and NTT
operations to accelerate the execution time. First of all, the



Figure 3: The NTT using Cooley-Tukey butterfly operations for n = 16

optimized Barrett reduction increases the utilization of vec-
tor registers by avoiding large data types. Secondly, NEON
implementation of Montgomery multiplication and reduction
greatly improves the computational efficiency of polyno-
mial multiplication. Besides, the layer merging technique
substantially accelerates the efficiency of the core module
NTT. For key generation, encapsulation, and decapsulation,
the combination of these optimizations achieved 1.77, 1.85,
and 2.16 faster than previous Kyber512 implementations.
Also, our optimizations of modular reduction and NTT
operations are useful for other works, such as NewHope.
These results further show the practicability of lattice-based
key encapsulation mechanism to protect current ARMv8-A
based platforms, like mobile phones and tablets.
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Kyber: a CCA-secure module-lattice-based KEM,” https://
github.com/pq-crystals/kyber.


