
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An Efficient and Scalable Sparse Polynomial
Multiplication Accelerator for LAC on FPGA

Jipeng Zhang1, Zhe Liu12(B), Hao Yang1, Junhao Huang1, Weibin Wu1

1Nanjing University of Aeronautics and Astronautics, Jiangsu, China
2State Key Laboratory of Cryptology, Beijing, China

November 26, 2020

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 1 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 Short Overview

2 LAC Scheme

3 Our Implementation

4 Implementation Results

5 Conclusion

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 2 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lattice-based Cryptography

RSA and ECC: Discrete Logarithm and Integer Factorization
Problems

Hard problems can be solved by Shor’s algorithm
Lattice-based Cryptography: Hard for quantum computers

Ring-LWE Encryption schemes: proposed [EUROCRYPT’10]
Huge performance improvement: Newhope [USENIX’16]
LAC is a unique scheme (Round 2 candidates): its modulus is 251,
which can be packed into a single byte.

NIST Post-Quantum-Cryptography (PQC) Project
2016, Formal call for proposals
2017, Round1 algorithms announced (69 submissions)
2019, Round2 algorithms announced (26 algorithms)
......

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 3 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementation Platform

Zynq-7020 (including Artix-7 FPGA)
FPGA is composed of hardware resources such as logic unit, RAM,
multiplier, etc.
FPGAs are widely used to design accelerators for cryptographic
schemes.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 4 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Motivation & Contribution

Motivation
The most compute-intensive routine in the LAC scheme is sparse
polynomial multiplication (SPM).
Hardware accelerator can greatly improve the performance of SPM.

Contributions: Efficient and Scalable SPM accelerator
Parallel design: Dual-For-Loop-Parallel (DFLP) technique.
A new modular reduction for the modulus q = 251.
Optimization of the pipeline design.
Scalable design can achieve various performance-area trade-offs.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 5 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 Short Overview

2 LAC Scheme

3 Our Implementation

4 Implementation Results

5 Conclusion

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 6 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LAC scheme

Key generation stage: KG
Dense polynomial: coefficients ai ∈ [0, q).
Sparse polynomial: coefficients ri ∈ {−1, 0, 1}, and more than half of
the coefficients are 0.
a⃗ is a dense polynomial and s⃗ is a sparse polynomial.
SPM is invoked when computing a⃗⃗s.
Public key

(
seeda, b⃗

)
and secret key s⃗ are obtained.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 7 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LAC scheme

Encryption stage: Enc(pk, m⃗, seed′)
a⃗ and b⃗ are dense polynomial. r⃗ is a sparse polynomial.
SPM is invoked when computing a⃗⃗r and b⃗⃗r.
Ciphertext c⃗ is obtained.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 8 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LAC scheme

Decryption stage: Dec(sk, c⃗)
c⃗1 is dense polynomial and s⃗ is sparse polynomial.
SPM is invoked when computing c⃗1⃗s.
Message m⃗ is obtained.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 9 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LAC scheme
For a sparse polynomial r⃗, its coefficients are chosen from the set
{−1, 0, 1}, so the multiplication operation in the algorithm can be
eliminated.
For LAC-Light, LAC128, LAC192 and LAC256, SPM takes up 48%,
54%, 66%, and 69% of the total time respectively.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 10 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 Short Overview

2 LAC Scheme

3 Our Implementation

4 Implementation Results

5 Conclusion

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 11 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overall Architecture

The proposed architecture consists of three memory blocks, including a
position memory ram_pos, p dense polynomial coefficient memories
ram_poly, an intermediate value and final result memory ram_res, three
data processing units, and a controller unit.

Controller Unit

ram_pos ram_res
Address

Calculating
Unit

pos address poly
Accumulating

Unit

Reduction
Unit

res
ram_poly

ram_poly

...

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 12 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Execution Flow

Step1: Once the accelerator is started, controller unit will prepare the
read address of ram_pos, and then issue a read request to ram_pos.
Step2: The outputs of ram_pos, including the position information of
sparse polynomial coefficients, are sent to Address Calculating Unit.

Controller Unit

ram_pos ram_res
Address

Calculating
Unit

pos address poly
Accumulating

Unit

Reduction
Unit

res
ram_poly

ram_poly

...

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 13 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Execution Flow

Step3: The outputs of Address Calculating Unit contain p read
addresses of ram_poly, then p read requests to ram_poly are issued in
parallel.
Step4: The Accumulating and Reduction Unit accumulates p outputs
from ram_poly and the intermediate value from ram_res. Then our new
modular reduction algorithm is used to correct each coefficients of the
result to [0, q), and the corrected result is sent to ram_res.

Controller Unit

ram_pos ram_res
Address

Calculating
Unit

pos address poly
Accumulating

Unit

Reduction
Unit

res
ram_poly

ram_poly

...

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 14 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Execution Flow

Step5: The read addresses of ram_poly are updated by controller unit
and then return to Step 3. Steps 3 to 5 are equivalent to the inner loop of
Algorithm SPM and the loop repeats until all the memory contents of
ram_res are updated.
Step6: After the inner loop, the controller unit updates the read
addresses of ram_pos and then return to step 1. Steps 1 and 6 are equal
to the for statement of the outer loop of Algorithm SPM. The counter of
the outer loop is ⌈h

p⌉.

Controller Unit

ram_pos ram_res
Address

Calculating
Unit

pos address poly
Accumulating

Unit

Reduction
Unit

res
ram_poly

ram_poly

...

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 15 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The choice of Block RAM and Distributed RAM

Block RAM is dedicated but width and depth is limited.
The total capacity of BRAM36/BRAM18 is 36/18 Kbit, and the
maximum width of them is 36/18 bits in dual-port mode.

Distributed RAM consists of Look Up Tables (LUTs), the most basic
logic element in FPGA.

RAM Type Width (Bit) Depth Mode
ram_pos DRAM p · log2(n) h/p Single-Port
ram_poly BRAM16 16 n Dual-Port
ram_res BRAM16 16 n/2 Dual-Port

ram_pos: get p positions per cycle (use parameter p to achieve
various performance-area trade-offs).
ram_poly and ram_res: take full advantage of BRAM’s bandwidth.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 16 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Parallel Design-Outer Loop Parallel

The 2th and 3th lines determine
the read request of ram_pos.
Only one position can be read at
a time without parallel design.

We can get p positions once at
a time in our parallel design.
Accordingly, the outer loop is
accelerated by p times.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 17 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Parallel Design-Outer Loop Parallel
There are p/2 identical copies.
For each ram_poly, each coefficient appears twice.
The read address is random and this structure can handle both of
even index and odd index.

16 bits 16 bits

...

p/2

a0 a1

a1 a2

.

.

.

.

.

.

an-1 a0

a0 a1

a1 a2

.

.

.

.

.

.

an-1 a0

Figure: ram_poly structure

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 18 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Parallel Design-Inner Loop Parallel
The maximum width of BRAM16 is 16bits in dual-port mode.
This means that 32 bits can be read from BRAM16 at a time, which
can accommodate four polynomial coefficients.
One port is used for reading, while another port is dedicated for
writing.
Inner loop is accelerated by 2 times.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 19 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

New Modular Reduction
Take p = 16 as an example, 16 8-bit coefficients are added and stored
in 12 bits.
28 ≡ 22 + 1(mod 251)
c ≡ 28c[11 : 8] + c[7 : 0] ≡ 22c[11 : 8] + c[11 : 8] + c[7 : 0]

An additional comparison and subtraction are needed for correcting
the result to [0, q).

c[11:0]

+
c[11:8]

c[7:0]

+
{c[11:8],0,0}

-

M
U

X

q

q

c'[8:0]
c'[8:0]

c'[8:0]

stage1 stage2

+ addition - subtraction comparison

M
U

X multiplexer

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 20 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

New Modular Reduction

Advantages of the new modular reduction:
It is more hardware friendly, because multiplication is not used.
Compared with compare-and-subtraction method, this method can
save hardware resources.
Thanks to the two-stage pipeline design, this method can achieve
higher hardware frequency.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 21 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 Short Overview

2 LAC Scheme

3 Our Implementation

4 Implementation Results

5 Conclusion

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 22 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementation Results for LAC128

Hardware resources and frequency
The number of LUTs and FFs has been slightly increased, but the
frequency has been increased by up to 34%.
Thanks to the full use of BRAM18, our design reduced 2,4 BRAM18
for p=8,16, respectively.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 23 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementation Results for LAC128

Cycles:
After using Dual-For-Loop-Parallel (DFLP) technique, the number of
cycles is halved compared to the previous work.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 24 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 Short Overview

2 LAC Scheme

3 Our Implementation

4 Implementation Results

5 Conclusion

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 25 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion

An Efficient and Scalable Sparse Polynomial Multiplication
Accelerator for LAC on FPGA

Better parallel design: Dual-For-Loop-Parallel (DFLP) technique.
A new modular reduction for the modulus q = 251.
Higher frequency through optimization of the pipeline design.
Scalable design can achieve various performance-area trade-offs.

The clock cycle is halved and the frequency is increased with a small
resources cost.

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 26 / 27

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Thanks

Thanks for listening

Jipeng Zhang (NUAA) LAC on FPGA November 26, 2020 27 / 27

	Short Overview
	LAC Scheme
	Our Implementation
	Implementation Results
	Conclusion

