An Efficient and Scalable Sparse Polynomial Multiplication Accelerator for LAC on FPGA

Jipeng Zhang¹, Zhe Liu¹²(⊠), Hao Yang¹, Junhao Huang¹, Weibin Wu¹

¹Nanjing University of Aeronautics and Astronautics, Jiangsu, China

²State Key Laboratory of Cryptology, Beijing, China

November 26, 2020

2 LAC Scheme

3 Our Implementation

Implementation Results

5 Conclusion

Image: A matrix and a matrix

- RSA and ECC: Discrete Logarithm and Integer Factorization Problems
 - Hard problems can be solved by Shor's algorithm
- Lattice-based Cryptography: Hard for quantum computers
 - Ring-LWE Encryption schemes: proposed [EUROCRYPT'10]
 - Huge performance improvement: Newhope [USENIX'16]
 - LAC is a unique scheme (Round 2 candidates): its modulus is 251, which can be packed into a single byte.
- NIST Post-Quantum-Cryptography (PQC) Project
 - 2016, Formal call for proposals
 - 2017, Round1 algorithms announced (69 submissions)
 - 2019, Round2 algorithms announced (26 algorithms)

•

Implementation Platform

- Zynq-7020 (including Artix-7 FPGA)
 - FPGA is composed of hardware resources such as logic unit, RAM, multiplier, etc.
 - FPGAs are widely used to design accelerators for cryptographic schemes.

Motivation

- The most compute-intensive routine in the LAC scheme is sparse polynomial multiplication (SPM).
- Hardware accelerator can greatly improve the performance of SPM.
- Contributions: Efficient and Scalable SPM accelerator
 - Parallel design: Dual-For-Loop-Parallel (DFLP) technique.
 - A new modular reduction for the modulus q = 251.
 - Optimization of the pipeline design.
 - Scalable design can achieve various performance-area trade-offs.

- 3 Our Implementation
- Implementation Results
- 5 Conclusion

< 4[™] ▶

- Key generation stage: KG
 - Dense polynomial: coefficients $a_i \in [0, q)$.
 - Sparse polynomial: coefficients r_i ∈ {−1, 0, 1}, and more than half of the coefficients are 0.
 - \vec{a} is a dense polynomial and \vec{s} is a sparse polynomial.
 - SPM is invoked when computing \vec{as} .
 - Public key $(seed_a, \vec{b})$ and secret key \vec{s} are obtained.

Algorithm 1 KG

Jipeng Zhang (NUAA)

• Encryption stage: *Enc*(*pk*, *m*, *seed*')

- \vec{a} and \vec{b} are dense polynomial. \vec{r} is a sparse polynomial.
- SPM is invoked when computing \vec{ar} and \vec{br} .
- Ciphertext \vec{c} is obtained.

Algorithm 2 Enc $(pk, \vec{m} \in \mathcal{M}, seed')$

Require: public key pk, message m, and a seed seed' **Ensure:** ciphertext \vec{c}' 1: seed_r, seed_{e1}, seed_{e2} \leftarrow aes_ctr(3 * 32, seed') 2: $\vec{a} \leftarrow GenA(seed_a) \in R_q$ 3: $\vec{r} \leftarrow Sample_{sk}(seed_r) \in \Psi_n^h$ 4: $\vec{e_1} \leftarrow Sample_{sk}(seed_r) \in \Psi_n^h$ 5: $\vec{e_2} \leftarrow Sample_{s}(seed_{e2}) \in \Psi_n^h$ 6: $\vec{m} \leftarrow ECCbnc(\vec{m}) \in \{0, 1\}^{l_w}$ 7: $\vec{c_1} \leftarrow \vec{a_1} + \vec{e_1} \in R_q$ 8: $\vec{c_2} \leftarrow (\vec{br})_{l_w} + \vec{e_2} + \lfloor \frac{q}{2} \rfloor \cdot \hat{\vec{m}} \in \mathbb{Z}_{l_w}^{l_w}$ 9: **return** $\vec{c} := (\vec{c_1}, \vec{c_2}) \in R_q \times \mathbb{Z}_w^{l_w}$

- Decryption stage: $Dec(sk, \vec{c})$
 - $\vec{c_1}$ is dense polynomial and \vec{s} is sparse polynomial.
 - SPM is invoked when computing $\vec{c_1 s}$.
 - Message \vec{m} is obtained.

```
Algorithm 3 Dec (sk = \vec{s}, \vec{c} = (\vec{c}_1, \vec{c}_2))
Require: secret polynomial \vec{s}, and ciphertext \vec{c}
Ensure: plaintext \vec{m}
 1: \vec{u} \leftarrow \vec{c}_1 \vec{s} \in R_q
 2: \widetilde{\vec{m}} \leftarrow \vec{c}_2 - (\vec{u})_{l_v} \in \mathbb{Z}_q^{l_v}
 3: for i = 0 to l_v - 1 do
         if \frac{q}{4} \leq \widetilde{\vec{m}}_i < \frac{3q}{4} then
 4:
            \widehat{\vec{m}}_i \leftarrow 1
 5:
            else
 6:
              \widehat{\vec{m}}_i \leftarrow 0
 7.
 8.
             end if
 9: end for
10: \vec{m} \leftarrow \text{ECCDec}(\vec{m})
11: return m
```

- For a sparse polynomial \vec{r} , its coefficients are chosen from the set $\{-1, 0, 1\}$, so the multiplication operation in the algorithm can be eliminated.
- For LAC-Light, LAC128, LAC192 and LAC256, SPM takes up 48%, 54%, 66%, and 69% of the total time respectively.

Algorithm 4 Sparse Polynomial Multiplication (SPM) **Require:** A dense polynomial: $\vec{a} = a_0 + \cdots + da_n$ $a_{n-1}x^{n-1}, a_i \in \mathbb{Z}_q$. A sparse polynomial: $\vec{r} = r_0 +$ $\dots + r_{n-1}x^{n-1}, r_i \in \{-1, 0, 1\}$. A position polynomial: $\vec{r'} = r'_0 + \cdots + r'_{h-1} x^{h-1}, \hat{r'_i} \in \mathbb{Z}_a$ where $\{r'_0, \cdots, r'_{h/2-1}\}/\{r'_{h/2}, \cdots, r'_{h-1}\}$ represent the index of 1/-1 in the sparse polynomial \vec{r} . Ensure: $\vec{b} = \vec{a} \cdot \vec{r}$ 1: Initialize all the coefficients of \vec{b} to 0 2: for i = 0 to h - 1 do ▷ outer loop $pos = \vec{r'}[i]$ 3. for i = 0 to n - 1 do 4: ▷ inner loop if $(j \ge pos\&i < h/2) || (j < pos\&i \ge h/2)$ then 5: $\vec{b}[i] + = \vec{a}[(i - pos + n) \mod n]$ 6. 7. else 8. $\vec{b}[i] = \vec{a}[(j - pos + n) \mod n]$ end if Qend for 10. 11: end for 12: return \vec{b}

- 3 Our Implementation
- Implementation Results

< 47 ▶

The proposed architecture consists of three memory blocks, including a position memory *ram_pos*, *p* dense polynomial coefficient memories *ram_poly*, an intermediate value and final result memory *ram_res*, three data processing units, and a controller unit.

Step1: Once the accelerator is started, *controller unit* will prepare the read address of *ram_pos*, and then issue a read request to *ram_pos*. Step2: The outputs of *ram_pos*, including the position information of sparse polynomial coefficients, are sent to *Address Calculating Unit*.

Step3: The outputs of *Address Calculating Unit* contain *p* read addresses of *ram_poly*, then *p* read requests to *ram_poly* are issued in parallel.

Step4: The **Accumulating and Reduction Unit** accumulates p outputs from **ram_poly** and the intermediate value from **ram_res**. Then our new modular reduction algorithm is used to correct each coefficients of the result to [0, q), and the corrected result is sent to **ram_res**.

Execution Flow

Step5: The read addresses of *ram_poly* are updated by *controller unit* and then return to Step 3. Steps 3 to 5 are equivalent to the inner loop of Algorithm SPM and the loop repeats until all the memory contents of *ram_res* are updated.

Step6: After the inner loop, the **controller unit** updates the read addresses of **ram_pos** and then return to step 1. Steps 1 and 6 are equal to the *for* statement of the outer loop of Algorithm SPM. The counter of the outer loop is $\lceil \frac{h}{p} \rceil$.

The choice of Block RAM and Distributed RAM

- Block RAM is dedicated but width and depth is limited.
 - The total capacity of BRAM36/BRAM18 is 36/18 Kbit, and the maximum width of them is 36/18 bits in dual-port mode.
- Distributed RAM consists of Look Up Tables (LUTs), the most basic logic element in FPGA.

RAM	Туре	Width (Bit)	Depth	Mode
ram_pos	DRAM	$p \cdot \log_2(n)$	h/p	Single-Port
ram_poly	BRAM16	16	п	Dual-Port
ram_res	BRAM16	16	n/2	Dual-Port

- ram_pos: get *p* positions per cycle (use parameter *p* to achieve various performance-area trade-offs).
- ram_poly and ram_res: take full advantage of BRAM's bandwidth.

Parallel Design-Outer Loop Parallel

- The 2th and 3th lines determine the read request of *ram_pos*.
- Only one position can be read at a time without parallel design.

Algorithm 4 Sparse Polynomial Multiplication (SPM)
Require: A dense polynomial: $\vec{a} = a_0 + \cdots + c_n$
$a_{n-1}x^{n-1}, a_i \in \mathbb{Z}_q$. A sparse polynomial: $\vec{r} = r_0 + c_0$
$\cdots + r_{n-1}x^{n-1}, r_i \in \{-1, 0, 1\}$. A position polyno-
mial: $\vec{r'} = r'_0 + \cdots + r'_{h-1} x^{h-1}, r'_i \in \mathbb{Z}_q$ where
$\{r'_0, \cdots, r'_{h/2-1}\}/\{r'_{h/2}, \cdots, r'_{h-1}\}$ represent the index
of $1/-1$ in the sparse polynomial \vec{r} .
Ensure: $\vec{b} = \vec{a} \cdot \vec{r}$
1: Initialize all the coefficients of \vec{b} to 0
2: for $i = 0$ to $h - 1$ do \triangleright outer loop
3: $pos = \vec{r'}[i]$
4: for $j = 0$ to $n - 1$ do \triangleright inner loop
5: if $(j \ge pos\&i < h/2) (j < pos\&i \ge h/2)$ then
6: $\vec{b}[i] + = \vec{a}[(j - pos + n) \mod n]$
7: else
8: $\vec{b}[i] = \vec{a}[(j - pos + n) \mod n]$
9: end if
10: end for
11: end for
12: return \vec{b}

- We can get *p* positions once at a time in our parallel design.
- Accordingly, the outer loop is accelerated by *p* times.

Parallel Design-Outer Loop Parallel

- There are p/2 identical copies.
- For each *ram_poly*, each coefficient appears twice.
- The read address is random and this structure can handle both of even index and odd index.

Figure: ram_poly structure

Parallel Design-Inner Loop Parallel

- The maximum width of BRAM16 is 16bits in dual-port mode.
- This means that 32 bits can be read from BRAM16 at a time, which can accommodate four polynomial coefficients.
- One port is used for reading, while another port is dedicated for writing.
- Inner loop is accelerated by 2 times.

New Modular Reduction

- Take p = 16 as an example, 16 8-bit coefficients are added and stored in 12 bits.
- $2^8 \equiv 2^2 + 1 \pmod{251}$
- $c \equiv 2^8 c[11:8] + c[7:0] \equiv 2^2 c[11:8] + c[11:8] + c[7:0]$
- An additional comparison and subtraction are needed for correcting the result to [0, q).

- Advantages of the new modular reduction:
 - It is more hardware friendly, because multiplication is not used.
 - Compared with compare-and-subtraction method, this method can save hardware resources.
 - Thanks to the two-stage pipeline design, this method can achieve higher hardware frequency.

2 LAC Scheme

3 Our Implementation

4 Implementation Results

5 Conclusion

< 47 ▶

Implementation Results for LAC128

- Hardware resources and frequency
 - The number of LUTs and FFs has been slightly increased, but the frequency has been increased by up to 34%.
 - Thanks to the full use of BRAM18, our design reduced 2,4 BRAM18 for p=8,16, respectively.

Design	p	Devices	LUTs/FFs/ BRAM18	Freq MHz	Cycles
Our work	2	xc7z020	328/230/2	263	34048
Our work	4	xc7z020	462/297/3	263	17024
Our work	8	xc7z020	783/432/5	202	8512
Our work	16	xc7z020	1407/704/9	157	4256
Wang el al.[8]	2	xc7z020	364/120/2	196	66432
Wang el al.[8]	4	xc7z020	476/163/3	196	33280
Wang el al.[8]	8	xc7z020	699/241/7	196	16672
Wang el al.[8]	16	xc7z020	1114/384/13	155	8352

• Cycles:

• After using Dual-For-Loop-Parallel (DFLP) technique, the number of cycles is halved compared to the previous work.

Design	p	Devices	LUTs/FFs/ BRAM18	Freq MHz	Cycles
Our work	2	xc7z020	328/230/2	263	34048
Our work	4	xc7z020	462/297/3	263	17024
Our work	8	xc7z020	783/432/5	202	8512
Our work	16	xc7z020	1407/704/9	157	4256
Wang el al.[8]	2	xc7z020	364/120/2	196	66432
Wang el al.[8]	4	xc7z020	476/163/3	196	33280
Wang el al.[8]	8	xc7z020	699/241/7	196	16672
Wang el al.[8]	16	xc7z020	1114/384/13	155	8352

2 LAC Scheme

3 Our Implementation

Implementation Results

< 47 ▶

- An Efficient and Scalable Sparse Polynomial Multiplication Accelerator for LAC on FPGA
 - Better parallel design: Dual-For-Loop-Parallel (DFLP) technique.
 - A new modular reduction for the modulus q = 251.
 - Higher frequency through optimization of the pipeline design.
 - Scalable design can achieve various performance-area trade-offs.
- The clock cycle is halved and the frequency is increased with a small resources cost.

Thanks for listening

æ