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Abstract—LAC, a Ring-LWE based scheme, has shortlisted
for the second round evaluation of the National Institute
of Standards and Technology Post-Quantum Cryptography
(NIST-PQC) Standardization. FPGAs are widely used to design
accelerators for cryptographic schemes, especially in resource-
constrained scenarios, such as IoT. Sparse Polynomial Multi-
plication (SPM) is the most compute-intensive routine in LAC.
Designing an accelerator for SPM on FPGA can significantly
improve the performance of LAC. However, as far as we
know, there are currently no works related to the hardware
implementation of SPM for LAC. In this paper, the proposed
efficient and scalable SPM accelerator fills this gap. More con-
cretely, we firstly develop the Dual-For-Loop-Parallel (DFLP)
technique to optimize the accelerator’s parallel design. This
technique can achieve 2x performance improvement compared
with the previous works. Secondly, we design a hardware-
friendly modular reduction algorithm for the modulus 251.
Our method not only saves hardware resources but also
improves performance. Then, we launch a detailed analysis
and optimization of the pipeline design, achieving a frequency
improvement of up to 34%. Finally, our design is scalable, and
we can achieve various performance-area trade-offs through
parameter p. Our results demonstrate that the proposed design
can achieve a very considerable performance improvement
with moderate hardware area costs. For example, our medium-
scale architecture for LAC-128 takes only 783 LUTs, 432 FFs,
5BRAMs, and no DSP on an Artix-7 FPGA and can complete
LAC’s polynomial multiplication in 8512 cycles at a frequency
of 202MHz.

Keywords-lattice-based cryptography; Ring-LWE; sparse
polynomial multiplication; hardware accelerator; LAC; FPGA;

I. INTRODUCTION

Public-key cryptography has been widely used to provide
encryption, key exchange, and digital signature functions.
For a long time, public-key cryptographic schemes such as
RSA and ECC have been secure against all known attacks.
However, back in 1994, Shor’s Algorithm [1] claimed to be
able to compute discrete logarithm and integer factorization
problems in polynomial time on large quantum computers,
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thus threatening the security of traditional public-key cryp-
tography such as RSA and ECC. As quantum computing
is developing rapidly, quantum computers that are large
enough to run Shor’s Algorithm seem possible to appear
soon. Alternative cryptographic schemes are urgent to be
developed to replace the existing public-key cryptography.

Post-quantum cryptography is one kind of cryptography
that can resist attacks from both classical computers and
quantum computers. There are currently several categories in
post-quantum cryptography, including lattice-based cryptog-
raphy, code-based cryptography, and multivariate cryptogra-
phy. Among all kinds of post-quantum cryptography, lattice-
based cryptography is the most promising one to replace
traditional public-key cryptography, due to its quantum-
resistant properties, versatility, and efficiency.

Learning with Errors over Ring (Ring-LWE) [2] problem
is one of the lattice-based hard problems. The algebraic
structure of Ring-LWE based cryptographic schemes is
polynomial rings over finite fields. LAC scheme [3] is based
on Ring-LWE and shortlisted for NIST-PQC Standardization
Round 2 evaluation [4]. One of the unique features of the
LAC scheme is its small modulus 251, which can be packed
into a single byte.

The most compute-intensive routine in the LAC scheme
is polynomial multiplication. The coefficients of secret and
noise polynomials in LAC follow the central binomial distri-
bution, and their value range is {−1, 0, 1}. It is worth noting
that more than half of the secret polynomial coefficients are 0
in LAC. Therefore, when multiplied with this polynomial, if
the coefficient were 0, then the corresponding multiplication
can be eliminated. This technique is the core idea of SPM.
The complexity of SPM depends on the number of non-
zero coefficients. Intuitively, SPM can halve the number
of multiplication instructions in LAC. Besides, the secret
polynomial non-zero coefficient in LAC is either -1 or 1, a
number multiplied by 1 gets itself, and a number multiplied
by -1 gets its opposite. Therefore, polynomial multiplication
in LAC can be implemented with simple addition and
subtraction instructions, eliminating the use of expensive
multiplication instructions. In conclusion, SPM in LAC
shows significant performance improvements compared with
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Schoolbook multiplication.
In this paper, our efficient and scalable SPM accelerator

fills the gap that there is no related work dedicated to
hardware design for LAC. Our contributions include several
optimizations for more reasonable hardware resource uti-
lization, higher circuit frequency, and scalable design. More
specifically, the contributions can be summarized as follows.

1) Parallel design is a critical factor for improving the
performance of SPM. To achieve higher parallelism
and better performance, we propose the Dual-For-
Loop-Parallel (DFLP) technique. This technique aims
to realize the dual-parallel design of the outer and
inner loop. In this way, the number of clock cycles
is halved with negligible resource costs.

2) The modular reduction is an essential routine in poly-
nomial multiplication. In software implementations,
Barrett reduction [5], Montgomery reduction [6], and
SAMS2 [7] are the most commonly used algorithms,
but the expensive multiplications in these algorithms
are unfriendly to hardware. Therefore, we design a
new modular reduction for the modulus q = 251,
which is better than the straightforward method used
in [8] and does not require additional multiplications.
As a result, this approach presents an efficient and
time-constant modular reduction implementation and
can also improve the frequency of our accelerator.

3) The maximum frequency of hardware design is limited
by pipeline design and the length of the critical path.
We launch a detailed analysis and optimization of the
pipeline design for the instance, which is instantiated
from [8] with LAC’s parameters. We shorten several
critical paths of this instance, generating a flatter
design. A combination of this contribution and the 2nd
contribution can achieve an up to 34% improvement
in frequency.

4) Our accelerator is scalable because we can achieve
various performance-area trade-offs through tuning
parameter p(= 2, 4, 8, 16). The parameter p is used
to control the degree of parallelism. The design with
small p(= 2, 4) is suitable for resource-constrained
scenarios, such as IoT. The design with big p(= 16)
is capable of performance-first scenarios. Besides, the
design with p = 8 is medium-scale, which can achieve
decent performance with moderate hardware resources
costs.

II. BACKGROUND AND RELATED WORK

A. The LAC Scheme
Let Z be integers, for any integer q ≥ 1, Zq denotes

the residue class ring modulo q. Rq(x) = Zq(x)/ (xn + 1)
defines the quotient polynomial ring Rq(x) where all coef-
ficients of the ring are in Zq .

The security basis of the LAC scheme is the Ring-LWE
problem. LAC scheme consists of four public-key primitives:

a public key encryption scheme with IND-CPA security
(LAC.CPA.PKE), a key encapsulation scheme with IND-
CCA security (LAC.CCA.KEM), a key exchange protocol
with passively security (LAC.KE), and an authenticated key
exchange protocol (LAC.AKE).

The entire LAC scheme’s foundation is the IND-CPA se-
cure public-key encryption (PKE), namely LAC.CPA.PKE.
It consists of three algorithms:

KG: As described in Algorithm 1, public key pk and se-
cret key sk are randomly generated. The subroutine aes ctr
takes seed as input and yields three pseudorandom seeds:
seeda, seedsk, seede. The difference between Samplesk
and Samplee is that the polynomial coefficients generated
in the former case are the index of the non-zero coefficients.
However, the output of the latter is an original sparse
polynomial.

Enc: Algorithm 2, the encryption algorithm, takes mes-
sage m and public key pk as input and it encrypts the
message m using public key. The subroutine ECCEnc deals
with the encoding of the error correction codes, and the
parameter lv denotes the length of the encoding.

Dec: The message m can be recovered from ciphertext c
using the corresponding sk through Algorithm 3. Decoding
with redundant error correction information, which can
reduce the failure rate of decryption, is performed within
the subroutine ECCDec.

Algorithm 1 KG

Ensure: a pair of public key and secret key (pk, sk)

1: seed
$←− {0, 1, . . . , 255}32

2: seeda, seedsk, seede ←− aes ctr(3 ∗ 32, seed)
3: ~a←− GenA(seeda) ∈ Rq
4: ~s←− Samplesk(seedsk) ∈ Ψh

n

5: ~e←− Samplee(seede) ∈ Ψh
n

6: ~b← ~a~s+ ~e ∈ Rq
7: return

(
pk :=

(
seeda,~b

)
, sk := ~s

)

Algorithm 2 Enc (pk, ~m ∈M, seed′)

Require: public key pk, message m, and a seed seed′

Ensure: ciphertext ~c
1: seedr, seede1, seede2 ←− aes ctr(3 ∗ 32, seed′)
2: ~a←− GenA(seeda) ∈ Rq
3: ~r ←− Samplesk(seedr) ∈ Ψh

n

4: ~e1 ←− Samplee(seede1) ∈ Ψh
n

5: ~e2 ←− Samplee(seede2) ∈ Ψh
n

6: ~̂m← ECCEnc(~m) ∈ {0, 1}lv
7: ~c1 ← ~a~r + ~e1 ∈ Rq
8: ~c2 ← (~b~r)lv + ~e2 +

⌊
q
2

⌉
· ~̂m ∈ Zlvq

9: return ~c := (~c1,~c2) ∈ Rq × Zlvq



Algorithm 3 Dec (sk = ~s,~c = (~c1,~c2))

Require: secret polynomial ~s, and ciphertext ~c
Ensure: plaintext ~m

1: ~u← ~c1~s ∈ Rq
2: ~̃m← ~c2 − (~u)lv ∈ Zlvq
3: for i = 0 to lv − 1 do
4: if q

4 ≤ ~̃mi <
3q
4 then

5: ~̂mi ← 1
6: else
7: ~̂mi ← 0
8: end if
9: end for

10: ~m← ECCDec( ~̂m)
11: return ~m

Table I shows the main parameters of LAC, n denotes
the dimensions of polynomials, q denotes the modulus, and
h denotes the number of non-zero coefficients of secret
polynomials and noise polynomials. For more details about
the LAC scheme, we refer to [3].

Categories n q h

LAC-128 512 251 256
LAC-192 1024 251 256
LAC-256 1024 251 384

Table I: Main parameters of LAC

B. Polynomial Multiplication

Polynomial multiplication can be done in many ways. A
straightforward method is schoolbook multiplication, whose
time complexity is O(n2). This method multiplies each co-
efficient of one polynomial with each coefficient of the other
polynomial, then merges terms of the same degree to get the
result. Another general method is Karatsuba & Toom-Cook
multiplication, which splits each polynomial into several
lower-degree polynomials and reduces the time complexity
down to O(nε) with ε ∈ (1, 2). The fastest method is
Number Theory Transform (NTT), but it requires that the
modulus q and order n must satisfy q ≡ 1 (mod 2n). NTT
is adopted by most of the lattice-based cryptosystems, such
as NewHope [9] and Kyber [10]. Although NTT only has a
lower time complexity of O(n log n), it cannot be used in
LAC due to its particular parameters. SPM is adopted by
LAC, which is described in Algorithm 4. The advantage of
SPM in LAC is that it has no multiplication instructions and
can have a high degree of parallelism.

C. Modular reduction

There are three commonly used reduction algorithms for
guaranteeing the result in [0,q). A straightforward method

Algorithm 4 Sparse Polynomial Multiplication (SPM)

Require: A dense polynomial: ~a = a0 + · · · +
an−1x

n−1, ai ∈ Zq . A sparse polynomial: ~r = r0 +
· · · + rn−1x

n−1, ri ∈ {−1, 0, 1}. A position polyno-
mial: ~r′ = r′0 + · · · + r′h−1x

h−1, r′i ∈ Zq where
{r′0, · · · , r′h/2−1}/{r

′
h/2, · · · , r

′
h−1} represent the index

of 1/-1 in the sparse polynomial ~r.
Ensure: ~b = ~a · ~r

1: Initialize all the coefficients of ~b to 0
2: for i = 0 to h− 1 do . outer loop
3: pos = ~r′[i]
4: for j = 0 to n− 1 do . inner loop
5: if (j ≥ pos&i < h/2)‖(j < pos&i ≥ h/2) then
6: ~b[i]+ = ~a[(j − pos+ n) mod n]
7: else
8: ~b[i]− = ~a[(j − pos+ n) mod n]
9: end if

10: end for
11: end for
12: return ~b

is as follows:
s = s− bs

q
c · q (1)

where a division instruction is used. However, division
instructions are the most expensive instructions, whether in
software or hardware. Hence this method is not suitable for
our accelerator. The core idea of Barrett reduction, Mont-
gomery reduction, and SAMS2 [7] is to replace division by
other instructions. Barrett reduction uses multiplication and
shift instruction to replace division. Montgomery reduction
only uses multiplication to replace division, but it needs
to transform from/to the Montgomery domain. In SAMS2,
the division instruction is replaced by shift, addition, and
multiplication.

D. Related Work

There are many works related to the hardware implemen-
tation for other NIST Round 2 candidates.

Wang et al. [8] designed parameterized hardware accel-
erators for qTESLA [11]. They also implemented the SPM
hardware accelerator, but their SPM is slightly different from
ours. Nevertheless, their design trades parameterization and
versatility at the cost of performance, so their performance
can still be improved.

Zhang et al. [12] proposed a low-complexity NTT and
inverse NTT (INTT) hardware architecture for NewHope
and an efficient modular reduction for modulus 12289. Their
modular reduction cleverly avoids multiplication instruction
by utilizing the feature 214 ≡ 212 − 1 (mod 12289). Their
method is valuable for our modular reduction design.

Akleylek et al. [13] implemented a low-complexity SPM
accelerator on FPGA. The SPM they studied has an extraor-



dinary form because the coefficients of the two polynomials
are in the range {-1,0,1}. In other words, both polynomials
are sparse in their design. However, there is only one sparse
polynomial in LAC. So their work is not compatible with
the LAC scheme.

Roy et al. [14] present an instruction set coprocessor
architecture for Saber. They proposed a parallel School-
book polynomial multiplication architecture that overcomes
memory access bottlenecks. They store the entire secret
polynomial s(x) in a shift register composing of Flip-Flops,
so their architecture can access all the coefficients of s(x)
simultaneously.

Mera et al. [15] implemented a better trade-off between
time and memory for Toom-Cook. They proposed two novel
techniques that can improve the efficiency of Toom-Cook
based polynomials. Furthermore, they applied their opti-
mization implementation of Toom-Cook to Saber. Applying
Toom-Cook to the LAC scheme for performance discussion
is a work we may consider in the future.

Besides, there are many works related to the hardware
implementation of NewHope scheme, such as [16–18]. The
hardware/software co-design is a research hotspot recently,
such as SIKE [19] and NTRU [20]. NTT plays a pivotal role
in lattice-based cryptography. Therefore, many works have
been done for NTT by [12, 21, 22]. As far as we know, there
is currently no hardware accelerator specially designed for
LAC.

III. HARDWARE ACCELERATOR DESIGN

A. Overall Architecture

Overview of the Architecture: The overall architecture
of our accelerator is designed and presented in Figure 1, and
our design is pipelined and scalable. The proposed architec-
ture consists of three memory blocks, including a position
memory ram pos, p dense polynomial coefficient memories
ram poly, an intermediate value and final result memory
ram res, three data processing units, and a controller unit.
Inspired by [8], we also use parameter p(= 2, 4, 8, 16)
to determine the number of dense polynomial coefficients
computed in parallel. The management of pipeline and
control signals is assigned to Controller Unit, which is also
responsible for maintaining the inner status of the acceler-
ator and updating the read/write addresses of ram pos and
ram res.

Execution Flow: The execution flow of our accelerator
is as follows.

1) Once the accelerator is started, controller unit will
prepare the read address of ram pos, and then issue a
read request to ram pos.

2) The outputs of ram pos, including the position infor-
mation of sparse polynomial coefficients, are sent to
Address Calculating Unit.

3) The outputs of Address Calculating Unit contain p
read addresses of ram poly, then p read requests to
ram poly are issued in parallel.

4) The Accumulating and Reduction Unit accumulates
p outputs from ram poly and the intermediate value
from ram res. Then our new modular reduction algo-
rithm is used to correct each coefficients of the result
to [0, q), and the corrected result is sent to ram res.

5) The read addresses of ram poly are updated by con-
troller unit and then return to Step 3. Steps 3 to 5 are
equivalent to the inner loop of Algorithm 4 and the
loop repeats until all the memory contents of ram res
are updated.

6) After the inner loop, the controller unit updates the
read addresses of ram pos and then return to step 1.
Steps 1 and 6 are equal to the for statement of the
outer loop of Algorithm 4. The counter of the outer
loop is dhp e.

The choice of Block RAM and Distributed RAM: There
are two different kinds of RAM in FPGA, Block RAM
(BRAM) and Distributed RAM. The former is dedicated, but
the configuration of width and depth is limited. For example,
the total capacity of BRAM36/BRAM18 is 36/18 Kbit, and
the maximum width of them is 36/18 bits in dual-port mode.
The latter consists of Look Up Tables (LUTs), the most basic
logic element in FPGA. Ideally, as long as there are enough
LUTs, we can implement a Distributed RAM of any width
and depth. As shown in Table II, in order not to overuse

RAM Type Width (Bit) Depth Mode

ram pos DRAM p · log2(n) h/p Single-Port
ram poly BRAM16 16 n Dual-Port
ram res BRAM16 16 n/2 Dual-Port

Table II: The choice of Block RAM and Distributed RAM

BRAM while getting p positions from ram pos per cycle,
we implement ram pos as Distributed RAM. In this way, the
width limitations of BRAM are avoided cleverly. In contrast,
ram poly and ram res are implemented as BRAM with 16-
bit width, for taking full advantage of BRAM’s bandwidth.

B. Parallel Design

We proposed the Dual-For-Loop-Parallel (DFLP) tech-
nique to optimize our parallel design, which elegantly com-
bines the small modulus advantage of LAC and the band-
width characteristic of BRAM on our hardware platform.

Outer Loop Parallel: The 2th and 3th lines of Al-
gorithm 4 determine the read request of ram pos, and
only one position can be read at a time without parallel
design. As shown in Figure 2a, we can get p positions
once at a time in our parallel design. Accordingly, the
outer loop corresponding to the 2nd line of Algorithm 4
is accelerated by p times, and the loop control variable i is
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Figure 1: SPM Accelerator Architecture

incremented by p instead of 1 each cycle. In order to meet
the aforementioned parallelism requirements, we implement
ram pos as Distributed RAM with (p · log2 n)-bit width,
which is much larger than the maximum width of Block
RAM.
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Figure 2: The Structure of ram pos and ram res

The Structure of ram poly: As described in Figure 3,
the structure of ram poly is special, and there are p/2
identical copies. For each ram poly, each coefficient appears
twice, for example, a1 appears in the first and second rows.
The reason is that, in order to meet the aforementioned
parallelism, we hope to get two coefficients from each port
of ram poly at a time, but the read address is random. If
the structure of ram poly is similar to that of ram res, then
the index at the beginning of each row of ram poly is an
even number. When the read address is an odd number, then
we can only get one coefficient from one port at a time. We
have to admit that there is 50% data redundancy here, but it
meets our requirements for the parallel design of the inner
loop.

Inner Loop Parallel: The modulus of LAC is 251, so a
polynomial coefficient can be stored in 8 bits. As described
in Section III-A, the maximum width of BRAM16 is 16
bits in dual-port mode. This means that 32 bits can be
read from BRAM16 at a time, which can accommodate
four polynomial coefficients of LAC. Similarly, as depicted

in Figure 2b, ram res is also instantiated as a dual-port
BRAM16 with a 16-bit width. However, one port is used
for reading, while another port is dedicated to writing. Both
of them can operate two polynomial coefficients at the same
time. Considering that ram poly has p/2 identical copies,
as shown in Figure 3, 2p coefficients can be read from dual
ports at a time. But only p coefficients can be obtained at a
time without inner loop parallel design, so the inner loop is
accelerated by 2 times.

16 bits 16 bits

...

p/2

a0 a1

a1 a2

.

.

.

.

.

.

an-1 a0

a0 a1

a1 a2

.

.

.

.

.

.

an-1 a0

Figure 3: The Structure of ram poly

In summary, we parallelized the outer loop by using the
bandwidth advantage of Distributed RAM and designed the
parallel strategy for the inner loop by thoroughly analyzing
and utilizing the bandwidth characteristics of BRAM. This
is the core idea of the DFLP technique.

C. Modular Reduction for LAC

Barrett, Montgomery, and SAMS2[7] are modular reduc-
tion algorithms commonly used in software implementa-
tions. Nevertheless, all three require multiplication instruc-
tion, which is expensive for hardware. A modular reduction
without multiplication was proposed in [12] for q = 12289,
which is not compatible with LAC.

For the convenience of presentation, similar to Verilog
hardware description language syntax, we use c[MSB :
LSB] to represent (MSB − LSB + 1) bits data. In our



architecture, p 8-bit coefficients are added and stored in
8 + log2 p bits. Take p = 16 as an example, the length of
c is 12 bits, which is used to store the accumulation result
of p coefficients. In order to avoid expensive multiplication
instruction, the feature 28 ≡ 22 + 1 (mod 251) is used, so c
can be expressed as:

c ≡ 28c[11 : 8] + c[7 : 0]

≡ 22c[11 : 8] + c[11 : 8] + c[7 : 0]
(2)

where the largest value of c[11 : 8] is 15, the largest value
of c[7 : 0] is 255, so the largest value of c is (15 <<
2 + 15 + 255) = 330 which can be expressed with 9 bits.
Finally, an additional comparison and subtraction are needed
for correcting the result to [0, q).

Similarly, for p = 2 only a comparison and subtraction
are needed, for p = 4, 8 we can get the following results
respectively:

c ≡ 28c[9 : 8] + c[7 : 0]

≡ 22c[9 : 8] + c[9 : 8] + c[7 : 0]
(3)

c ≡ 28c[10 : 8] + c[7 : 0]

≡ 22c[10 : 8] + c[10 : 8] + c[7 : 0]
(4)

And an additional comparison and subtraction for correcting
the result to [0,q) is still needed.

Figure 4 shows the hardware architecture of this modular
reduction algorithm, which is designed with a two-stage
pipeline. At the first stage, three additions are calculated, and
the output is sent to the second stage. Thereafter, comparison
and subtraction are executed to obtain the result in the
second stage.

A straightforward reduction method is used in [8], and its
design is excellent in terms of parameterization and versatil-
ity. For example, 4 polynomial coefficients are accumulated
into c ranging from 0 to 4q, their reduction process is as
follows:

1) if(c ≥ 2q) c = c− 2q
2) if(c ≥ q) c = c− q

This modular reduction method is completed by log2 p
comparison and subtraction, which is obviously sub-optimal
from the view of efficiency. Compared with this straight-
forward method, our design can save hardware resources,
improve performance, and achieve a higher frequency.

D. Optimization of Pipeline Design

The maximum frequency of hardware design depends on
the pipeline design and length of critical paths. The shorter
the critical paths are, the higher frequency it can achieve. We
analyze three critical paths of SPM hardware design in [8]
and optimize their pipeline design.

Firstly, their straightforward modular reduction method is
sub-optimal. For p = 8, three cycles are required to complete
the reduction. More specifically, during the first/second/third

cycle, they correct the result from [0, 8q)/[0, 4q)/[0, 2q)
to [0, 4q)/[0, 2q)/[0, q). This process requires a 11/10/9-bit
width comparison and subtraction. Our reduction algorithm
has some minor differences when q = 2, 4, 8, 16, and only
two cycles are needed. In the first cycle, a 9-bit addition is
performed. In the second cycle, a 9-bit comparison and 9-
bit subtraction are performed. Therefore, our design’s critical
path length is shorter, and our design is more efficient than
the straightforward method on account of fewer cycle counts.

Secondly, we notice that the Step 4 of Execution Flow in
Section III-A can also be optimized. Specifically, the addi-
tion and reduction of intermediate result and accumulation
result are calculated in one cycle, as described below:

assign sum =((accu res+ inter res) ≥ q)?
(accu res+ inter res− q) :

(accu res+ inter res);

(5)

where accu res is the result of p polynomial coefficients
accumulation and reduction, and inter res is read from
ram res as an intermediate result of the whole calculation
process. This method generates a relatively long path, re-
sulting in a lower frequency. Our optimization strategy is
to split the above process into two cycles. The addition is
calculated in the first cycle, and reduction is performed in
the second cycle. The path length can be roughly halved in
this way.

Finally, the synthesis tool prompted us to insert registers
at the output of BRAM, which can improve the frequency
of the design. The reason is that BRAM is distributed in a
specific area in FPGA, so the connection between BRAM
and logic circuit is relatively long. Inserting register can cut
off the long path and achieve a higher frequency.

In summary, our optimization can improve the frequency
by up to 34%. For example, for p = 2/4 and the LAC-128
scheme, the frequency increases from 196MHz to 263MHz.

IV. PERFORMANCE EVALUATION AND COMPARISON

In this section, we present the performance and com-
parison of the SPM accelerator we designed in Table III.
This table only shows the results of LAC128, because
there are similar performance improvements for LAC192
and LAC256. Our design is described by Verilog hardware
description language, synthesized on the Zynq-7000 plat-
form (xc7z020clg400-2) using Vivado 2019.2 with “PerfOp-
timized” option. To make a fair comparison, we instantiated
the hardware design of SPM in [8] with the parameters of
LAC and synthesized it on our platform.

The design of Wang et al. [8] is parametric, which gives
up some performance optimizations of specific schemes for
the sake of compatibility. For example, their straightforward
modular reduction is sub-optimal in terms of performance
but is compatible with most cryptosystems. The reduction
from [0, 2q) to [0, q) is achieved by subtracting q directly if
the value is greater than q, and the bottleneck is comparison
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Design p Devices LUTs/FFs/
BRAM18

Freq
MHz Cycles

Our work 2 xc7z020 328/230/2 263 34048
Our work 4 xc7z020 462/297/3 263 17024
Our work 8 xc7z020 783/432/5 202 8512
Our work 16 xc7z020 1407/704/9 157 4256

Wang el al.[8] 2 xc7z020 364/120/2 196 66432
Wang el al.[8] 4 xc7z020 476/163/3 196 33280
Wang el al.[8] 8 xc7z020 699/241/7 196 16672
Wang el al.[8] 16 xc7z020 1114/384/13 155 8352

Table III: Performance and Comparison of LAC128

operation. In this way, it takes log2 8 = 3 cycles to correct
a value from [0, 8q) to [0, q). Besides, their pipeline design
remains much scope for implementation.

As shown in Table III, our implementation is nearly two
times faster than the design proposed in [8] with the same
parameters and platform. The cycle counts in the table do
not include the time of loading data to RAM. The cycle
counts of us and Wang et al. [8] can be calculated by the
following formulas respectively.

h/p ∗ (N/2 + 10) (6)

h/p ∗ (N + 6 + log2 p) (7)

h/p is used to represent the count of outer loop which
corresponds to the 2th line in the Algorithm 4, and obviously,
both of us design p-way parallel strategy for the outer loop.
Our implementation also designs 2-way parallel strategy for
the inner loop using the DFLP technique, so the count of the
inner loop is N/2 instead of N . 10 and 6 + log2 p are the
cycles consumed by the pipeline initialization, where 2 out
of 10 cycles are used to perform our new modular reduction,
and log2 p cycles are consumed by their straightforward
modular reduction. Our pipeline initialization cycles are
longer than their design because we designed a deeper
pipeline for higher frequency. A combination of the pro-
posed DFLP technique and the optimization of pipeline

design doubles the number of Flip-Flops (FFs) consumed
by our design. Specifically, our design consumes 230 FFs,
while the design of Wang et al. consumes only 120 when
p = 2. The new modular reduction we proposed reduces 36,
50, 84, and 293 LUTs for p = 2, 4, 8, 16 respectively. Our
design frequency increases by 34% for p = 2, 4 with the
optimization of pipeline design and the utilization of new
modular reduction. We thoroughly considered the width of
BRAM18 and the requirements of our design and matched
them correctly, so our design reduced 2, 4 BRAM18 for
p = 8, 16, respectively.

V. CONCLUSION

This paper proposed several optimizations for the design
of accelerator for SPM. First of all, the DFLP technique
utilizes the bandwidth advantage of BRAM18 to improve
the efficiency of our design at a small cost of resources.
Secondly, our new modular reduction improves efficiency
and reduces the resource overhead of the LUTs. A flatter
pipeline was designed by careful analysis and optimiza-
tion of the critical paths, achieving a higher frequency. A
combination of these optimizations yields an efficient and
scalable SPM accelerator that is twice as fast as the previous
best implementation in the literature. Also, our design can
be scaled according to the parameter p(= 2, 4, 8, 16), the
design with a small p is suitable for resource-constrained
equipment, and the design with a large p can be applied
to performance-first scenarios. Although this paper focuses
on the implementation of SPM for LAC, we finally remark
that the proposed new modular reduction is applicable to
other lattice-based cryptosystems with similar mathematical
derivations. Our optimizations of pipeline design are also
useful for other works.
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and I. Verbauwhede, “Efficient ring-lwe encryption
on 8-bit avr processors,” in International Workshop
on Cryptographic Hardware and Embedded Systems.
Springer, 2015, pp. 663–682.

[8] W. Wang, S. Tian, B. Jungk, N. Bindel, P. Longa,
and J. Szefer, “Parameterized hardware accelerators for
lattice-based cryptography and their application to the
HW/SW co-design of qtesla,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., vol. 2020, no. 3, pp. 269–306,
2020.

[9] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe,
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